
SOFTDMC

FPGA based

Digital Motion Controller

3.9 --- SW Rev. 4.100+ / HW Rev. 30+

This page intentionally not blank

Table of Contents

SOFTDMC . 1

SAFETY . 1
GENERAL . 2

HOST INTERFACE . 3

HOST INTERFACE DESCRIPTION . 3
GENERAL . 3

BUS INTERFACE DESCRIPTION . 3
REGISTER MAP . 3
COMMAND/DATA FIFOS . 3
READ-BACK FIFOS . 3
STATUS REGISTER A . 4
STATUS REGISTER B . 5

COMMANDS . 5
WRITE COMMANDS . 6
EXAMPLE LONG WRITE PROCEDURE . 6
WRITE BLOCK COMMAND . 7
EXAMPLE WRITE BLOCK PROCEDURE . 8
READ COMMANDS . 8
EXAMPLE LONG READ PROCEDURE . 9
WAIT ON FLAG COMMANDS . 9
HOST SYNCHRONIZATION . 10
SYNC FLAG . 10
USING FIFOS WITH INTERRUPTS . 10

FIRMWARE DOWNLOAD . 12
GENERAL . 12

 DOWNLOAD PROCESS . 12

Table of Contents

 OPERATION . 13
PARAMETERS . 13

GENERAL . 13
MAKEINC . 13

PARAMETER TYPES . 13

PARAMETER DESCRIPTIONS . 14

HARDWARE REGISTER DESCRIPTIONS . 24
GENERAL . 24
COUNTER CONTROL REGISTER . 24
COUNT MODE . 25
INPUT FILTER . 25
INTERRUPT SETUP REGISTER . 26
INTERRUPT CAUSE REGISTER . 26
HOST ACCESS TO ICR . 26
I/O PORTS . 27

MOTION UNITS . 28
POSITION UNITS . 28
VELOCITY AND ACCELERATION UNITS . 28
VELOCITY IN RPM . 28
MAXIMUM COUNT RATE . 28
PWM AND SAMPLE RATE . 29
SYMMETRICAL PWM MODE . 29
CHOOSING A PWM RATE . 29
MAXIMUM SAMPLE RATE . 30

Table of Contents

 PROFILE GENERATOR . 31
GENERAL . 31
PROFILE TYPES . 31
TRAPEZOIDAL PROFILE MODE . 31
ERRORS AT HIGH SPEEDS . 32
ABORTING A MOVE . 32
VELOCITY MODE . 33
EXTERNAL PROFILE MODE . 33
HOMING . 34

PID LOOP . 35
GENERAL . 35
MAIN PARAMETERS . 36
FEEDFORWARD PARAMETERS . 37
SECONDARY PARAMETERS . 37
FAULT CONDITIONS . 39
ERROR MASK . 39
FAULT SEQUENCE . 39
EXCESSIVE POSITION ERROR . 40
EXCESSIVE DRIVE ERROR . 40
RECOVERING FROM FAULT CONDITIONS 41

TUNING . 42
DMCTUNE . 42
TUNING PROCEDURE . 43

MULTIPHASE MOTOR OPERATION . 45
GENERAL . 45
STEP MOTOR SETUP . 45
OPEN LOOP MODE . 45
CLOSED LOOP MODE . 45
MECHANICAL PHASE ALIGNMENT . 46
ELECTRICAL PHASE ALIGNMENT . 46

Table of Contents

EVENT LOGIC . 47
GENERAL . 47
WHAT EVENTS DO . 47
LOGICAL EVENTS . 48
ARITHMETIC EVENTS . 49
USING CONDITIONAL EVENTS . 50
EVENT OP CODES . 51

UNCONDITIONAL EVENTS . 51
CONDITIONAL EVENTS . 52
DELTA TRIGGERED CONDITIONAL EVENTS 53
CONDITION MODIFIERS . 54

GLOBAL AND LOCAL EVENTS . 55
MULTI-AXIS GEARING WITH EVENTS . 55

MOTION PARAMETER BLOCKS . 56
GENERAL . 56

 MOTION CONTROL PARAMETERS . 57

FILTER PARAMETER BLOCKS . 58
GENERAL . 58
PID LOOP TUNING PARAMETERS . 58

USER PARAMETERS . 59
GENERAL . 59
LEDS . 59
SPEAKER . 59
USER PHASE ACCUMULATOR . 59

DEMONSTRATION SOFTWARE
 RP, WP AND WF AND EVENT COMMAND LINE UTILITIES 61

ENVIRONMENT VARIABLES . 61
RP . 62
WP . 63
WF . 64
EVENT . 65

REFERENCE INFORMATION . 68
PINOUTS . 68

BRUSH MOTOR PINOUT (7I30,7I33,7I40) 68
7I32 STEP MOTOR PINOUT . 70
7I41 STEP MOTOR PINOUT . 72
THREE PHASE MOTOR PINOUT (7I39) 74
IO PORT PINOUT . 76

SOFTDMC 1

SOFTDMC

SAFETY

WARNING

Servo motors are capable of inflicting serious injury both to people and
mechanisms associated with the servo system. In addition, some motors use
potentially lethal supply voltages.

When a servo system is first configured, unpredictable behavior should be
EXPECTED. First time checks of basic servo operation (such as motor position
versus drive) should be checked with the motor power leads disconnected.

NEVER depend on software commands to disable a motor when you or others
would be exposed to a hazard should the motor start unexpectedly. Motor power
should be always be removed when working on mechanical parts of the servo
system.

Be especially careful with encoder wiring, as a simple bad connection of one
encoder wire can lead to loss of control and a runaway servo system.

SOFTDMC 2

SOFTDMC

GENERAL

The SOFTDMC digital motion controller is a FPGA based multi-axis DC servo motor
controller intended for embedding in Xilinx SpartanII, SpartanIIE ,Spartan3, Spartan3E and
Virtex FPGAs.

All logic, CPU, RAM and program ROM reside in a single FPGA chip making for an
extremely flexible, powerful, and very low cost motion control solution. Custom variants of
the SOFTDMC design can be easily created for specific applications.

SOFTDMC supports brush, 2 phase stepper, 3 phase brushless and 3 phase AC
induction motors. Steppers and 3 Phase brushless motors can be operated open-loop (no
encoder).

The SOFTDMC design has an embedded ~50-100 MIPS 16 bit DSP coupled with
special hardware for motion control. Each axis has dual quadrature and index inputs. Up
to 72 general purpose I/O bits are also available for limit switches, status outputs, absolute
encoder inputs, and other uses.

Position, velocity and acceleration parameters are all 32 bit. Dual encoders per axis
permit dual feedback (position/velocity). 32 bit gearing between axis is provided for precise
ratioed multi-axis moves.

The PID loop has the normal proportional, integral, integral limit, and derivative
terms, plus velocity, acceleration, bias, and friction feed forward terms to extract the
maximum performance from the mechanics. High sample rates (>50KHz for 4 axis
simultaneous motion, 96 MHz clock) support small and fast drive systems.

Programmable event logic allows real time response to internal (position, time,
velocity, flags, etc) and external (limit switches, sensors, etc) events. Event logic combined
with the FIFOed host interface allow fully buffered profiling operations and filter changes
based on breakpoints or external events.

Efficient dual FIFO host interface allows real time and queued commands to proceed
simultaneously. The buffered synchronous design of the host interface allows almost any
parameter to be changed during motion. Wait-on-flag tokens allow precise queued
command timing to one sample period. 16 bit PC/104, 8 bit microcontroller, PCI, serial,
and other host interface types are available.

SOFTDMC 3

HOST INTERFACE

GENERAL INTERFACE SPECIFICATIONS

GENERAL
The SOFTDMC has several host interface types available, but all interface types

share as single register map with four 16 bit registers starting at the BASE address (Note
that all addresses are byte addresses) All host interaction with the SOFTDMC is done via
these registers. The serially and USB interfaced SOFTDMC configurations are similar but
are accessed via either an ASCII command set with hexadecimal parameters or the LBP
protocol.

BUS INTERFACE DESCRIPTION

REGISTER MAP

BASE ADDRESS ICD FIFO

BASE ADDRESS +4 QCD FIFO

BASE ADDRESS +8 STATUS REGISTER A

BASE ADDRESS +12 STATUS REGISTER B

COMMAND/DATA FIFOS
Most communication to the SOFTDMCs internal processor is done via the two

command/data FIFOs. These FIFOs are called the Immediate Command/Data FIFO (ICD
FIFO) and the Queued Command/Data FIFO (QCD FIFO). The ICD FIFO and the QCD
FIFO function identically though the ICD FIFO is typically smaller than the QCD FIFO. The
reason that there are 2 FIFOs is to allow immediate I/O requests to be serviced (via the
ICD FIFO) even if the QCD FIFO is busy with queued commands.

With either FIFO, commands and parameters are written sequentially to the desired
FIFO, with data following commands in the case of write commands.

Note: When first configured, the FPGA disables access to the ICD FIFO to prevent the last
bytes of the configuration data from being misinterpreted as commands. To enable the ICD
FIFO, 0x0000 should be written to status register A.

READ-BACK FIFOS
When the ICD of QCD FIFO locations are read, they return data from the read back

FIFOs. These FIFOs are used to return data from SOFTDMC to the host. Since the read-
back FIFOs are independent of the Command/Data FIFOs, read and write commands may
be mixed. They also allow multiple read commands to be issued before reading back the
data.

SOFTDMC 4

HOST INTERFACE

BUS INTERFACE DESCRIPTION

 STATUS REGISTER A
Status register A is used to determine FIFO and interrupt status. Read only FIFO

status is available in the top 8 bits of status register A. All FIFO status bits are active high.
The bottom 8 bits are read/write interrupt status bits. When SOFTDMC is in the firmware
download mode, Status register A is used to write the firmware address.

STATUS REGISTER A READ-ONLY BITS

IFF IFH QFF QFH IRE IRH QRE QRH ICR7 ICR6 ICR5 ICR4 ICR3 ICR2 ICR1 ICR0

BIT 15 IFF = Immediate Command/Data FIFO full flag

BIT 14 IFH = Immediate Command/Data FIFO half full flag

BIT 13 QFF = Queued Command/Data FIFO full flag

BIT 12 QFH = Queued Command/Data FIFO half full flag

BIT 11 IRE = Immediate read-back FIFO empty flag

BIT 10 IRH = Immediate read-back FIFO half full flag

BIT 9 QRE = Queued read-back FIFO empty flag

BIT 8 QRH = Queued read-back FIFO half full flag

BIT 7..0 Bits 0 through 7 of status register A reflect the lower 8 bits of the
interrupt cause register.

STATUS REGISTER A WRITE-ONLY BITS

RS CI X X X X X X CI7 CI6 CI5 CI4 CI3 CI2 CI1 CI0

BIT15 RESETS SOFTDMC CPU and enables firmware download mode

BIT14 Clear Interrupt Bit(s).

BIT 7..0 Bits CI0 ..CI7 specify which bits to clear in the ICR when bit 14 (CIB)
is high. In other words, to clear ICR0, you would write 0x4001 to
status register A, to clear all ICR bits you would write 0x40FF.

SOFTDMC 5

HOST INTERFACE

BUS INTERFACE DESCRIPTION

 STATUS REGISTER B
Status register B is a general purpose status register used to convey real time

information to the host. It is normally used by SOFTDMC events. When SOFTDMC is in
the firmware download mode, Status register B is used to read or write firmware data.

COMMANDS

Host communication consists of sending commands and data and reading returned
data from either of the FIFOs. There are three basic command types: read commands,
write commands and wait commands.

All commands share a similar structure:

W S1 S0 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

BIT 15 Write bit - 1 for writes, 0 for reads

BITS 14,13 Size field:

0,0 One 16 bit word

0,1 Two 16 bit words (one long)

1,0 Special for wait commands and block writes

1,1 four 16 bit words (one quad)

BITS 12,11,10 Axis specifier

BITS 9..0 Parameter address

BITS 9..0 Word count on block write commands

SOFTDMC 6

HOST INTERFACE

COMMANDS

WRITE COMMANDS
All write commands have bit 15 set. Bits 14 and 13 specify the write data size. The

least significant 10 bits specify the parameter address where the data is to be written. For
write commands with data size greater than one word, the data is written in least significant
to most significant order.

WRITE_WORD (16 BITS) COMMAND

1 0 0 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

WRITE_LONG (32 BITS) COMMAND

1 0 1 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

WRITE_QUAD (64 BITS) COMMAND

1 1 1 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

EXAMPLE LONG WRITE PROCEDURE
A polled host procedure for writing a 32 bit SOFTDMC parameter via the ICD FIFO is as
follows:

1. Check status register A for ICD Half Full Flag. If the flag is clear, there is
enough room for a write command and following data.

2. Write WRITE_LONG command to ICD FIFO

3. Write least significant 16 bits of 32 bit parameter to ICD FIFO

4. Write most significant 16 bits of 32 bit parameter to ICD FIFO

SOFTDMC 7

HOST INTERFACE

COMMANDS

 WRITE BLOCK COMMAND
The write block command is provided for writing larger amounts of data, it differs

from the other write commands in that the word count is specified in the least significant
bits of the command and that specifying the starting parameter address requires an
additional word of data following the write block command in the FIFO.

WRITE BLOCK COMMAND

1 1 0 A2 A1 A0 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

Bits 9..0 (C9..C0) are the block write count bits and specify the number of words to
write. The number of words written is count +1, That is, a count of 0 specifies a single data
write, and a count of 63 would cause 64 words to be written.

The Block write command is always followed by a:

PARAMETER ADDRESS

1 1 0 X X X P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Which specifies the starting parameter address for the block write. The parameter
address is incremented for each successive data item.

NOTE: Block writes are always atomic, that is, the host interface code will always
write the entire block before starting the next sample period, also a block write will not
begin until sufficient data is available in the FIFO to complete the command, therefore
large block writes should start at the beginning of the host interface portion of the DSPs
cycle. This can be accomplished with a wait command that polls the SYNC flag (see
below). Block writes that take longer than the available host interface time will cause a
delay in starting of the next sample period.

SOFTDMC 8

HOST INTERFACE

COMMANDS

 EXAMPLE WRITE BLOCK PROCEDURE
A polled host procedure for writing a block < (ICDFIFOSize/2 -2) of SOFTDMC

parameters via the ICD FIFO is as follows:

1. Check status register A for ICD Half Full Flag. If the flag is clear, there is
enough room for a write command and following data.

2. Write WRITE_BLOCK command with word count to ICD FIFO

3. Write parameter address to ICD FIFO

4. Write count+1 data words to ICD FIFO

READ COMMANDS
All read commands have bit 15 = 0, and bits 14 and 13 specify the read data size.

The least significant 10 bits specify the parameter address where the data is to be read
from. For read commands with data size greater than one word, the data is read in least
significant to most significant order.

READ_WORD (16 BITS) COMMAND

0 0 0 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

READ_LONG (32 BITS) COMMAND

0 0 1 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

READ_QUAD (64 BITS) COMMAND

0 1 1 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

SOFTDMC 9

HOST INTERFACE

COMMANDS

 EXAMPLE LONG READ PROCEDURE
A polled host procedure for reading a 32 bit SOFTDMC parameter via the ICD FIFO is as
follows:

1. Check status register A for ICD Full Flag. If the flag is clear, there is enough
room for a read command, otherwise wait.

2. Write READ_LONG command to ICD FIFO

3. Wait until IRB Empty flag is false

4. Read least significant 16 bits of 32 bit parameter from ICD FIFO

5. Wait until IRB Empty flag is false

6. Read most significant 16 bits of 32 bit parameter from ICD FIFO

WAIT ON FLAG COMMANDS
In addition to the read and write commands, a wait-on-flag command is available

to synchronize FIFO operations to internal SOFTDMC conditions. The wait on flag
command pauses IFIFO or QFIFO command processing until the desired logical condition
is met. The logical condition test is done by first XORing the specified parameter with
FLAGXOR parameter, then anding the result with the FLAGAND parameter. If the result
of the test is non-zero, the WAIT-ON-FLAG token is removed from the FIFO, and FIFO
processing can continue. Note that FLAGXOR and FLAGAND are per axis parameters.
Wait on flag commands will work in either the ICD or QCD FIFOs but it is suggested that
they only be used in the QCD FIFO. This is because it is possible to generate a deadlock
that can only be exited via a reset if a unsatisfied wait command holds up both FIFOs.

0 1 0 A2 A1 A0 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

Wait on flag commands are useful for operations like profiling where groups of
parameter updates are synchronized to position or sample count break-points. In this case
the flag that the wait on flag command is polling would typically be set with a compare
event. Wait on flag commands can also be use to reduce host polling when doing indexing
type operations, allowing multiple sequential trapezoidal profiles to be queued in the FIFO
with a wait on flag(GO) separating the individual motion profiles.

SOFTDMC 10

HOST INTERFACE

COMMANDS

 HOST SYNCHRONIZATION
The internal DSP handles host interface requests on a synchronous polled basis,

that is it does all the motion control operations for all axis, then runs the host interface loop
until the next sample time. This mode of operation has the advantage that almost any
motion related parameter can be accessed and changed during operation.

During the host interface part of the cycle the DSP polls both ICD and QCD FIFOs
and executes any commands found. Commands are only executed when all the data
required by the command is available in the FIFO. Sometimes i t is des i rable to
synchronize host data reads and writes with the internal DSP. For example, it might be
desirable that a group of parameter writes be accomplished during a single sample period.
Since host FIFO writes are asynchronous to the internal DSP sample timing, a write
command might be executed near the end of the host interface cycle. This could mean that
subsequent write commands would be executed in the next sample period. To avoid
splitting groups of commands between samples, a special flag is available, the SYNC flag.

SYNC FLAG
The SYNC flag is set when the DSP first enters the host interface part of its

processing cycle and clear for the rest of the host interface time. By using the wait on flag
command with the SYNC flag as a parameter, command parsing can be paused until the
start of the host interface portion of the DSPs cycle. If a wait on SYNC flag command
precedes a group of read or write commands, that group of commands will be held up in
the FIFO until the start of the next host interface cycle, allowing the full host interface cycle
time to execute the group of commands.

The wait on SYNC flag procedure can still fail to keep a group of parameter updates
constrained to one sample period in some circumstances. This can happen if the host
parameter update rate is too slow or the host is interrupted while writing parameters. In this
case processing of the parameter group begins at the start of the host interface time, but
not all parameter update data is available in the FIFO by the end of the host interface
cycle. To avoid this problem, A separate wait on flag command that precedes the wait on
SYNC command is issued. Then a parameter write command sent through the ICD FIFO
sets the flag of the first wait on flag command once all the queued parameter writes are
in the QCD FIFO. The wait on SYNC flag will then pause the FIFO until the next host
interface period.

SOFTDMC 11

HOST INTERFACE

COMMANDS

USING THE FIFOS WITH INTERRUPTS
The most efficient way to interface to SOFTDMC FIFOs is via interrupts. This is

accomplished by placing set interrupt commands (a word parameter write command to the
IRQCAUSE Register, the ICR) in the FIFO after a block of commands and data loaded in
the FIFO. This way, an interrupt will be generated after the block of commands have been
parsed, signaling the host that new commands may be loaded in the Command/Data
FIFOs or data may be read back. The interrupt service routine can determine the interrupt
source by reading the least significant 8 bits of status register A, which will reflect the data
written to the ICR.

The interrupt service routine can clear one or all bits in the ICR by writing to Status
register A.

The interrupt hardware can be used in polled mode by using the same technique
of putting write to ICR commands in the FIFO after a block of read or write commands, and
polling status register A.

For more details on the interrupt hardware, see the INTERNAL HARDWARE section
below.

SOFTDMC 12

HOST INTERFACE

GENERAL

FIRMWARE DOWNLOAD
The 16 bit DSP in the SOFTDMC can have its firmware downloaded from the host

if desired. This will overwrite the standard SOFTDMC firmware that is part of the FPGA
configuration. Two registers are involved in program downloading: the program address
register, and the program data register.

PROGRAM ADDRESS REGISTER @ BASE + 8

L CI X X X A A A A A A A A A A A

PROGRAM DATA REGISTER @BASE + 12

D D D D D D D D D D D D D D D D

DOWNLOAD PROCESS
The process for downloading new DSP firmware is as follows: All the words of DSP

program are written by first writing the target address Ored with bit 15 (Load bit) to the
program address register, then writing the program data for that address to the program
data register. This is repeated for all the words of the program firmware. When all the
program words have been written, the DSP is started is by writing a 0 to the DSP program
address register, starting execution of the new code.

SOFTDMC 13

OPERATION

PARAMETERS

GENERAL
The SOFTDMC motion controller has a large number of parameters that control its

operation. Some of these parameters are global but most are duplicated for each axis.
The file INCLUDE4.INC and BITS4.INC supplied with the SOFTDMC configuration have
the specific parameter addresses and types. Parameter addresses are not referred to in
this document as they may change from firmware revision to revision. This list is not
complete as there are many more parameters that are used internally or for special
purposes. The INCLUDE4.INC file lists all parameters.

MAKEINC
The supplied utility program MAKEINC will translate the INCLUDE4.INC and

BITS4.INC to files to include files of various sorts. Assembly, batch, C, and Pascal include
files can be created. Invoking MAKEINC with no parameters will print usage information.
Examples of MAKEINC usage:

MAKEINC INCLUDE4.INC SOFTDMC1.H C

(Create C include file of parameter addresses)

MAKEINC INCLUDE4.INC MOTPARMS.PAS P S Loc

(Create Pascal include file of parameter addresses, all with appended Loc string)

PARAMETER TYPES

There are six different types externally useable parameters:

FLAG: Flags are a 16 bit parameters, 0xFFFF is "true" 0 is false.

PTR: 11 bit address pointer range 0 to 2047

INT: 16 bit signed number range -32,768 to 32,767

UINT: 16 bit unsigned number range 0 to 65,535

LONG: 32 bit signed number range -2,147,483,648 to 2,147,483,647

ULONG: 32 bit unsigned number range 0 to 4,294,967,295

SOFTDMC 14

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

OPERATION FLAGS

GO FLAG AXIS Start profile when set true, cleared when
done

PID FLAG AXIS Enable PID portion of control loop when
true

PROFILE UINT AXIS 0= Off, 1=Trapezoidal profile mode, 2=
external (cubic) profile mode

DIRINV FLAG AXIS Invert direction output polarity if true

FILTERBLOCK PTR AXIS Pointer to PID filter block (points to
default filter block at startup)

PROFILEBLOCK PTR AXIS Pointer to profile control block (points to
default profile block at startup)

HOME FLAG AXIS True when home operation is complete

MOTION FLAG AXIS True when in motion (velocity <> 0)

SLEW FLAG AXIS True when slew portion of profile has
been reached

ERROR UINT AXIS Bit 0 = Excessive position error

Bit 1 = Excessive drive error

ERRORMASK UINT AXIS ANDed with error, if <>0 the fault routine
is run

RESET FLAG AXIS Do hardware reset of Axis if cleared

STOPATHOME FLAG AXIS Set DESVEL and GO to 0 on home event
if STOPATHOME is set

SOFTDMC 15

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MISC MONITORING AND CONTROL FUNCTIONS

LED PTR GLOBAL Specify which parameter the debug LEDs
follow

LEDAXIS PTR GLOBAL Specify which axis the LEDs parameter
is read from

BEEPER PTR GLOBAL Specify which parameter the beeper is
driven by

ACTVEL INT AXIS Actual velocity (counts/sample)

MAXPWM UINT AXIS Maximum PWM drive applied

AVGVEL INT AXIS (8.8) Average actual (counted) velocity

MAXNEGERR INT AXIS Maximum negative deviation from profile.
(Recorded counts)

MAXPOSERR INT AXIS Maximum positive deviation from profile
(Recorded counts)

EXPOSERR UINT AXIS Excessive position error limit (counts)

DRIVEERROR UNIT AXIS Excessive drive detection logic
accumulator

POSENC PTR AXIS PID loops pointer to position encoder
(default = ENCP)

VELENC PTR AXIS PID loops pointer to position encoder
used for velocity calculation (default =
ENCP)

EVENTS UINT AXIS Number of events (max number depends
on free memory)

FIXUP LONG AXIS Difference between profile end position
and NEXTPOS (counts)

SOFTDMC 16

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

 PID LOOP TUNING PARAMETERS (Working block)

KK UINT AXIS PWM offset or bias

KP UINT AXIS Proportional constant

KD UINT AXIS Derivative constant

KA UINT AXIS Not used

KI ULONG AXIS Integral constant

KIL UINT AXIS Integral limit

KF1 UINT AXIS Velocity feed forward term

KF2 UINT AXIS Acceleration feed forward term

KF3 UINT AXIS Phasor velocity feed forward

KFF UINT AXIS Friction feed forward / PWM deadzone
term

KDFIL UINT AXIS Derivative term filter coefficient

DRIVEPLUS UINT AXIS Added to DRIVEERROR when Drive =
MAXPWM

DRIVEMINUS UINT AXIS Subtracted from DRIVEERROR when
drive < MAXPWM

NEXTFILBLOCK PTR AXIS Pointer to next filter block

SOFTDMC 17

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MOTION CONTROL PARAMETERS (Working Block)

DESPOSF LONG AXIS Fractional part of DESPOS (<1 count)

DESPOS LONG AXIS Desired Position

VELOCITY LONG AXIS Profile velocity (8.24 counts/sample)

ACCELF INT AXIS Fractional part of 48 bit ACCEL (32.16)

ACCEL LONG AXIS Profile Acceleration

JERK LONG AXIS Profile Jerk (Delta ACCEL)

BREAKPOINT LONG AXIS Breakpoint value for this block

NEXTPROBLOCK PTR AXIS Pointer to next profile block

NEXTPOS LONG AXIS Next position for internal profile generator

SLEWLIMIT LONG AXIS S l e w s p e e d d u r i n g m o v e
(counts/2^24/sample)

SOFTDMC 18

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

USER PARAMETERS

ENCP LONG AXIS Primary encoder position (counts)

ENCS LONG AXIS Secondary encoder position (counts)

FOLLOW PTR AXIS Pointer to position for PID loop to follow
(default = DESPOS)

DESVEL LONG AXIS Velocity target for velocity follower
(Counts/2^24/sample)

HOMEPOSP LONG AXIS Primary encoder starting position count
(loaded when index detected)

HOMEPOSS LONG AXIS Secondary encoder starting position
count (loaded when index detected)

PHASEK LONG AXIS Phase constant for user timer
(PHASEA=(PHASEK*sample)

PHASEA LONG AXIS User phase accumulator timer

FLAGXOR FLAG AXIS Used by Wait on flag token

FLAGAND FLAG AXIS Used by wait on flag token

SOFTDMC 19

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MULTIPHASE RELATED PARAMETERS

PHASEAI UINT AXIS Max A current for stepper/3 phase open
loop current.

PHASEBI UINT AXIS Max B current for stepper

OFFSETI UINT AXIS Current offset for amplifier .

ENCODERCNT UINT AXIS Encoder counts per revolution

ENCFACTOR UINT AXIS (1024 *Poles*256) / ENCODERCNT

SLIPK INT AXIS Constant for generating slip frequency for
AC motors

OPENLOOP FLAG AXIS Set true for open loop mode (PID loop will
use DESPOS instead of position error)

PHASELEAD INT AXIS Lead angle, normally 256 or -256 (+ or -
90 deg) for 2 phase and 341 or -341 (+
or - 120 deg) for 3 phase.

PHASESHIFT FLAG AXIS Sets lead angle to 0 or 90 degrees.

MOTORPHASE UINT AXIS Primary encoder count mod
ENCODECNT. Manipulated to align
encoder count with drive.

SOFTDMC 20

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MISCELLANEOUS GLOBAL PARAMETERS

TIMEOUT UINT GLOBAL Count of DSP out of time events

SWREVISION UINT GLOBAL Firmware revision number

Major rev. = MSB, Minor rev. = LSB

CONTROLTYPE UINT GLOBAL LSB = Motor phases

(1 = brush, 2= 2 phase 3= 3 phase)

CPUTYPE UINT GLOBAL DSP CPU type

GPHASEK LONG GLOBAL Phase constant for user timer
(GPHASEA=(GPHASEK*sample)

GPHASEA LONG GLOBAL Global phase accumulator timer

GPHASEF FLAG GLOBAL Flag set when GPHASEA overflows

PROCTIMER UINT GLOBAL Process timer, reads SYSCLK*2 cycles
for processing all enabled axis

SYSCLK LONG GLOBAL SOFTDMC SYSCLK frequency in Hz

AXIS EVENT AND GENERAL PURPOSE RAM (6 words per event)

EVENT1..EVENT24 AXIS 24 Events or 144 words of RAM

GLOBAL EVENT/MISC RAM

GEVENT1 through GEVENT36 GLOBAL 36 Events or 216 words of RAM

SOFTDMC 21

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

INTERNAL HARDWARE

CNTCTL UINT AXIS Sets operational mode of quadrature
input counter

CNTCLRP UINT AXIS Any write clears primary encoder counter

CNTCLRS UINT AXIS Any write clears secondary encoder
counter

PRESCALE UINT GLOBAL Sample rate prescale digital oscillator -
s e t s P W M r a t e a s :
(SYSCLK/256)*(PRESCALE/65536)

POSTSCALE UINT GLOBAL Byte sample rate postscale divider - sets
sample rate as PWM/POSTSCALE.
POSTSCALE MSB is symmetrical PWM
mode enable

PWMGENA UINT AXIS Byte (in MSB of word) PWM value
normally driven by PID loop, but can be
host controlled if the PID loop is disabled

PWMGENB UINT AXIS Byte (in MSB of word) PWM value
normally driven by PID loop, but can be
host controlled if the PID loop is disabled

PWMGENC UINT AXIS Byte (in MSB of word) PWM value
normally driven by PID loop, but can be
host controlled if the PID loop is disabled

DIRA UINT AXIS Single bit in MSB controls direction output
bit

DIRB UINT AXIS Single bit in MSB controls direction output
bit

ENA UINT AXIS Controls Hbridge/Servo Amp enable bit

SOFTDMC 22

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

INTERRUPT REGISTERS
 IRQSETUPREG UINT GLOBAL Controls IRQ channel and mask

IRQCAUSE UINT GLOBAL Writes here set IRQ and OR data
written to the IRQ Cause register.
Bits 0..7 of IRQ cause register are
reflected in Status register A

USER I/O PORTS

PORTA UINT GLOBAL I/O port A data register

PORTADDR UINT GLOBAL I/O port A data direction register

PORTB UINT GLOBAL I/O port B data register

PORTBDDR UINT GLOBAL I/O port B data direction register

PORTC UINT GLOBAL I/O port C data register

PORTCDDR UINT GLOBAL I/O port C data direction register

PORTD UINT GLOBAL I/O port D data register

PORTDDDR UINT GLOBAL I/O port D data direction register

PORTE UINT GLOBAL I/O port E data register

PORTEDDR UINT GLOBAL I/O port E data direction register

PORTF UINT GLOBAL I/O port F data register

PORTFDDR UINT GLOBAL I/O port F data direction register

SOFTDMC 23

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

HARDWARE INFO

NAXIS UINT GLOBAL Number of Axis for this hardware

HWREVISION UINT GLOBAL Hardware revision number

ICDFIFOSZE UINT GLOBAL Immediate Command/Data FIFO size

QCDFIFOSZE UINT GLOBAL Queued Command/Data FIFO size

IRBFIFOSZE UINT GLOBAL Immediate data Read-Rack FIFO size

QRBFIFOSZE UINT GLOBAL Queued data Read-Back FIFO size

SOFTDMC 24

OPERATION

HARDWARE REGISTER DESCRIPTIONS

GENERAL
Most of the internal hardware in the SOFTDMC is for use by the DSP and the user

need not be concerned with its operation. There are however a few I/O devices that are
appropriate for the user to access directly: The counter control register, the interrupt setup
register and the I/O ports.

COUNTER CONTROL REGISTER
There are usually two quadrature counters available per axis (for the primary and

secondary encoders). Each counter has an associated counter control register. The
counter control register is an 10 bit register in the least significant part of the word:

CLRO DIR U/D FILTER CLRD COI IDXPOL CL/IDX B A

Counter control register bits are defined as follows:

B9 CLRO CLeaR Once, If set, causes the COI bit to be cleared if counter is
cleared.

B8 DIR Sets count DIRection, clear = normal, set = reversed

B7 U/D R/W C Up/Down mode if set (1x mode) quadrature (4X) mode if clear

B6 FILTER R/W C Enables ~3 MHz digital low pass filter on A,B, Index inputs if
set.

B5 CLRD R/W C If read as 1, indicates counter has been cleared, if written as
0, clears flag

B4 COI R/W C Clear On Index, if set, counter will be cleared by index

B3 IDXPOL R/W C Sets polarity of index input - High = active high index

Low = active low index

B2 CL/IDX R/W C Clear counter if set on writes, read back index input status.
Note that the count clear function is deprecated in favor of CNTCLRX

B1 B R/O C Reads back realtime B input

B0 A R/O C Reads back realtime A input

SOFTDMC 25

OPERATION

INTERNAL HARDWARE

COUNT MODE
The encoder counters can operate in 2 different modes: Quadrature mode and

up/down mode. Quadrature mode(the default) is selected when the U/D bit in the counter
control register is a zero, Up/down mode is selected when the U/D bit is a one.

When used in quadrature mode, the counter will count on every edge of the A and
B inputs. This is sometimes called the 4X mode, since a X line encoder will generate 4X
counts per revolution in this mode. This is the suggested mode of operation for most
motion control applications since it quadruples the encoder resolution, is more resistant
to false counts, and will result in higher performance.

When used in the up/down mode, a count is generated by the rising edge of the A
input. This is sometimes called in a 1X mode (a 500 line encoder will generate 500 counts
per revolution in up/down mode) When the UP/DOWN mode is selected, the A input
becomes the count input and the B input becomes the count direction, When B is high the
count direction is up.

The secondary encoder can be used in UP/DOWN mode to emulate a
stepper/indexer combination. To do this the PID loops FOLLOW pointer is set to point to
the secondary encoder. Now the A, and B inputs of the secondary encoder become step
and direction inputs to the emulated stepper. Each step will index the motor one encoder
count of the primary encoder.

INPUT FILTER
The encoder counters have an optional digital input filter that reduces susceptibility

to noise spikes on the encoder lines. The filter is enabled by setting the FILTER bit in the
counter control register. When the filter is enabled, the maximum count rate is limited to
~3 MHz. It is suggested that the filter always be enabled unless count rates faster than 3
MHz need to be tracked.

SOFTDMC 26

OPERATION

INTERNAL HARDWARE

IRQ SETUP REGISTER
The PC/104 and PCI versions of the SOFTDMC have an interrupt control register

to specify which interrupt is generated by writing to the Interrupt Cause Register. The
Interrupt control register is an 8 bit register in the LS byte of the word:

IRQ IMASK XX IDRVEN ISEL3 ISEL2 ISEL1 ISEL0

Interrupt control register bits are defined as follows:

B7 IRQ R/O Interrupt request status

B6 IMASK R/W Interrupt mask - high to enable interrupt

B5 XX Not used

B4 IDRVEN Tri-State IRQ drive enable (high to enable) (PC/104 only)

B3--B0 ISELX Interrupt select bits (PC/104 only)

INTERRUPT CAUSE REGISTER.
The interrupt cause register (ICR) is an 8 bit register that can be written by the DSP.

When the DSP writes to the ICR, the data written is Ored with the existing data in the ICR.
This allows the DSP to set a desired bit in the ICR without disturbing the other bits. The
ICR can be read by the host as the least significant 8 bits of Status register A.

IC7 IC6 IC5 IC4 IC3 IC2 IC1 IC0

A host interrupt is asserted whenever IMASK is true and any bit of the ICR is true.
This means that separate events or queued commands can set separate bits in the ICR
to cause an interrupt, and allow the host to determine the cause or causes of the interrupt.

HOST ACCESS TO ICR
The host can read the ICR as the least significant 8 bits of host Status Register A,

and can clear bits in the ICR by writing a clear interrupt command to Host Status Register
A. A clear interrupt command consist a of a 16 bit word with bit 14 and the ICR bits that
you wish to clear set to one. For example, Writing 0x4003 to Host Status Register A would
clear ICR bits 1 and 0.

SOFTDMC 27

OPERATION

INTERNAL HARDWARE

 I/O PORTS
A number of general purpose I/O ports are available for any use. These can be read

and written by the host for simple polled operation, or driven by the DSPs event logic for
real time response to and control of external events. All I/O ports are 12 bits wide, in the
LS portion of the word (bits 0 through 11). Each port has an associated data direction
register (DDR). A 0 in a bit position of the DDR means that the corresponding bit in the I/O
port is an input. A 1 in a bit positions in the DDR means that the corresponding bit in the
I/O port is an output. At reset, the DDR is cleared, so the default port direction is all-bits-in.

When a bit is configured as an output, reads of that bit will return the real time status
of the I/O pin, not the latched output data. If a high capacitance load is being driven, an
immediate readback after an output may not reflect the latest data written to that bit. This
means that care must be taken if multiple events in the same Axis do read-modify-write
operations to the same I/O port location.

SOFTDMC 28

OPERATION

MOTION UNITS

POSITION UNITS
Position units are simple, they are just a signed 32 bit position numbers. In closed

loop mode, they correspond directly with encoder counts. In open loop mode (2 phase and
3 phase BLDC only) the position is in units of microsteps. There are 1024 microsteps per
motor pole. For example with a standard 200 step (50 pole) step motor, there are 51200
microsteps per revolution. The encoder counter can be programmed to run in quadrature
(4X) mode (default) or up/down mode. In quadrature (or 4X) mode, the counter will change
on every input edge, this would, for example, give 2000 counts per revolution with a 500
line encoder. In the up/down mode, a 500 line encoder will give 500 counts per revolution.
VELOCITY AND ACCELERATION UNITS

Dynamic units are a little more complex because they involve the sample period.
The DESVEL parameter is signed 32 bit number with units of encoder_counts / (2^24)
/sample_period. One way of looking at this is as a 32 bit number with a 24 bit fractional
part (8.24). This means that the maximum programmable velocity is ~127 counts per
sample period. With a 500 line encoder (in 4X mode = 2000 counts/rev) and a ~10 KHz
sample rate this works out to be ~38000 RPM. Minimum velocity would be 1/(2^24) counts
per sample period which works out to .000018 RPM (less than 1 revolution per month) at
a 10 KHz sample rate, which is also the velocity resolution at a 10 KHz sample rate.
Acceleration units are in encoder_counts/2^24/sample_period^2.

VELOCITY IN RPM
The following equation can be used to calculate a DESVEL or SLEWLIMIT value

for a desired speed in RPM:

SLEWLIMIT = (RPM * 2^24 * EncoderCountsPerRev) / (60 * SampleRate)

MAXIMUM COUNT RATE
The quadrature counter hardware consists of a 9 bit up/down counter with

quadrature input decode logic. At every sample period, each counter are read, the count
value added to a 32 bit accumulator and then the 9 bit hardware counter is cleared. This
limits the maximum count rate of the encoder inputs to ~255 counts per sample. This is
double the fastest programmable velocity, so is very unlikely to occur normally. The count
rate works out to be ~2.55 MHz at a 10 KHz sample rate or 6.38 MHz at a 25 Khz sample
rate. Note that the count rate is limited to ~3 MHz if the input filter option is enabled (see
hardware section)

SOFTDMC 29

SAMPLERATE'PWMRATE/POSTSCALE

PWMRATE'(SYSCLK/256)((PRESCALE/65536)

OPERATION

MOTION UNITS

PWM AND SAMPLE RATE
The PID loop and Profile Generator operate at a fixed sample interval determined

by the setting of two parameters. PRESCALE and POSTSCALE. PRESCALE sets the
rate of a 16 bit phase accumulator. The phase accumulator multiplies the system clock by
a factor of PRESCALE/65536. For example, the maximum PRESCALE value of 65535 will
result in a multiplication ratio very close to one, while a PRESCALE value of 16384 would
result in a ratio of 1/4. The output of the phase accumulator generates the clock for the
PWM generator. The phase accumulator is used instead of a programmable divider so that
the sample rate may be chosen with high resolution. At normal PWM rates of ~25KHz, the
PWM frequency and hence sample rate are selectable to within the accuracy of the
system clock crystal oscillator, < .01 %. The equations for PWM rate and sample
rate are as follows:

For example, at a system clock frequency of 50 MHz, a PRESCALE value of 8389
would give a PWM value of 25.001 Khz. (50e6/256*8389/65536). With a POSTSCALE
value of 2, the sample rate would be 25.001 Khz/2 = 12.5 Khz.

SYMMETRICAL PWM MODE
In addition to the normal PWM mode, a symmetrical PWM mode is available. With

normal PWM, the PWM leading edge is the same for all channels, while the trailing edge
is determined by the PWM value. With symmetrical PWM, both the leading and trailing
edge are determined by the PWM values such that the PWM pulse is centered on the total
PWM period. This is often desirable for 3 Phase BLDC motor drive.

The symmetrical PWM mode is selected by writing a 1 to bit 15 of the POSTSCALE
register. When symmetrical PWM is selected, the PWM rate will be ½ the value given in
the equation above. The SAMPLERATE is not affected by the PWM mode.

CHOOSING A PWM RATE
PWM rates are normally chosen to be above the audible range (>20 KHz). Lower

rates can be used for larger motors and have the advantage of higher efficiency due to
lower switching losses in the Hbridge. When the PWM is used with a filter to generate
analog signals for standard servo amplifiers (like the 7I33 analog servo interface), the
highest PWM rate should be chosen to reduce output ripple.

SOFTDMC 30

OPERATION

MOTION UNITS

MAXIMUM SAMPLE RATE
The SOFTDMC firmware is capable of running at ~30 KHz sample rate for 4 axis

in simultaneous motion and ~15 KHz for 8 axis in simultaneous motion. If the event logic
is used, the maximum sample rate will be decreased by an amount depending on the total
number of events. Time per event is approximately 700 nS.

If the sample rate is set faster than the DSP can process all the enabled axis, the
TIMEOUT count will be incremented. The processing time per loop can be measured via
the PROCTIMER parameter. The PROCTIMER parameter is updated every sample and
counts the number of system clock/2 counts used by the DSP for processing all the
enabled axis. For example, at a system clock of 50 MHz, the PROCTIMER will run at 25
MHz (40 nS/count), so a PROCTIMER value of 700 would be equal to 700*40nS = 28
uSec. Note that if a timeout event happens, the PROCTIMER parameter will be invalid for
that cycle.

If the sample time is set faster than the DSP can process all the axis, the motion
controller will still work, but the sample time will be determined by the (variable) processing
time instead the sample rate generator. Since velocity and acceleration values will be
variable in this case, you should not normally run the motion controller in this mode.

Occasional timeouts caused by running near the maximum sample rate do not
cause long term timing errors because DSP will ‘catch up’ with missed samples (up to 16
in a row)

SOFTDMC 31

OPERATION

PROFILE GENERATOR

GENERAL
There are two main parts of the motion controller firmware, the PID loop and the

PROFILE generator. The basic job of the profile generator is to provide position information
(DESPOS = setpoint position) for the PID loop to track, The PID loop then generates drive
and direction signals to control the motor so that the actual motor position matches
DESPOS. A profile is a set of positions in the time domain. The profile generator has
parameters for acceleration, slew speed and motion endpoints, and one main control flag:
GO. The profile generator has three main modes of operation, trapezoidal mode velocity
mode and external profile mode.
PROFILE TYPES

The PROFILE parameter determines the operation mode of the profile generator.
There are three valid values for the PROFILE parameter: 0, 1, or 2. A value of 0 disables
the profile generator. A value of 1 enables the trapezoidal profile mode . A value of 2
enables the external profile mode.

TRAPEZOIDAL PROFILE MODE
In trapezoidal profile mode, motion always starts from a stopped condition, in other

words the VELOCITY term is 0. To do a move, the desired ACCEL, SLEWLIMIT, and
NEXTPOS parameters are written and the GO flag is set. The controller will do a ramp-
up/slew/ramp-down motion profile determined by the ACCEL, SLEWLIMIT and NEXTPOS
parameters. Note that JERK is not used in trapezoidal profile mode.

During ramp-up, at every sample, the ACCEL parameter is added to or subtracted
from the VELOCITY parameter, and in turn the VELOCITY value is added to the DESPOS
parameter. When the absolute VELOCITY parameter is >= SLEWLIMIT, the acceleration
stops and the motion continues at the SLEWLIMIT rate until a the ramp-down portion of
the motion profile is reached. At this point the signed ACCEL parameter is added to or
subtracted from the VELOCITY parameter until the VELOCITY parameter reaches 0. At
this point the GO flag is cleared by the DSP, and the position move is complete. This
ramp-up/slew/rampdown motion profile is called a trapezoidal profile because the velocity
profile is a trapezoid. The position profile is a parabolic (square) function of time.

CHANGING TRAPEZOIDAL PROFILE PARAMETERS ON-THE-FLY
The determination of the position to start ramp-down is done dynamically by

calculating the required acceleration needed to stop at NEXTPOS, A = V^2/2D, When this
value of A greater than or equal to the profiles programmed acceleration at the current
velocity and position relative to the endpoint, ramp-down is begun. This dynamic
calculation allows the host or event logic to change velocity, acceleration, or endpoint
during a trapezoidal move and still reach the desired endpoint. Parameters can be
changed freely as long as they are not changed during the ramp-down portion of the
profile, and that ramp down to the endpoint is possible.

SOFTDMC 32

OPERATION

PROFILE GENERATOR

ABORTING A MOVE
An executing profile can be aborted by clearing the GO flag and setting the DESVEL

parameter to 0. This can be done by the host, or the event logic.

When doing an abort, the host can determine when the motion has stopped by
polling the MOTION flag. When the MOTION flag is cleared, motion has stopped. At this
point the DESPOS parameter can be read to determine the current position.

If a fast stop is needed, the acceleration parameter should be loaded with an
appropriate value after DESVEL has been set to 0.

SOFTDMC 33

OPERATION

PROFILE GENERATOR

VELOCITY MODE
Velocity mode is a subset of trapezoidal profile mode. In velocity mode, the motion

is controlled by the commanded velocity (DESVEL) parameter, and unlike position mode,
motion parameters (ACCEL, AND DESVEL) can be changed on the fly. This is useful for
for profiling operations, allowing complex profiles to be built up from piecewise line
segments with new data sent to the motion controller for each line segment instead of
every point. In velocity mode, the GO bit is not used (and must be 0), and the commanded
velocity (DESVEL) is manipulated directly.

When the DESVEL parameter is changed, the profile generator will increment or
decrement VELOCITY by the current ACCEL value until it equals DESVEL, at that point
VELOCITY will stay constant until DESVEL is changed. DESPOS is always incremented
by the current VELOCITY parameter in velocity mode.

To stop when in velocity mode, DESVEL is set to 0. The MOTION flag can then be
polled to determine when motion has stopped.

The velocity mode can be used for profiling and also for continuous motion: for
conveyors, stirrers etc, as nothing "funny" happens when the DESPOS count wraps at
2^32.

EXTERNAL PROFILE MODE
In this mode the host is can control the profile by manipulating the JERK and

ACCEL, VELOCITY and DESPOS parameters. This allows creation of cubic position
profiles. To use the External profile mode, the PROFILE parameter must be set to 2. Only
the DDA (adder) portion of the profile generator is active. The DDA does the following
calculations every sample:

IAccel <= IAccel + JERK

JERK is a signed 32 bit number that is added to the least significant 32 bits of the IAccel
parameter. IAccel is a signed 48 bit number consisting of ACCEL as the most significant
32 bits and ACCELF as the least significant 16 bits.

VELOCITY <= VELOCITY +ACCEL (32 bit signed add with ACCELF ignored)

IDespos <= IDespos + VELOCITY*256 (64 bit signed add)

IDespos is a 64 bit number consisting of DESPOS as the most significant 32 bits (the
integer part) and DESPOSF as the least significant 32 bits (the fractional part).

SOFTDMC 34

OPERATION

PROFILE GENERATOR

EXTERNAL PROFILE MODE
In the external profile mode, the velocity follower is disabled so the DESVEL

parameter will have no effect on operation. GO should not be set when using the external
profile mode.

 HOMING
One special function of the profile generator is homing, or establishing the initial

reference point for encoder position readout. Homing requires that there be some kind of
mechanical or optical switch to detect home position, and that this switch is wired to the
index input. To detect this the counter control register of the primary encoder needs to be
setup to recognize the index input. First,The IdxPol bit should be written to match the
active state of the index input, in other words set to a 1 for active high index signals and
0 for active low index signals. Next the encoder counter is programed to clear its count
when index is detected by setting the Clear_On_Index (COI) bit in the counter control
register. In most cases it is also desirable to set the ClearOnce bit in the Counter Control
Register. Counter Control Register bits are defined as follows:

CLRO DIR U/D FILTER CLRD COI IDXPOL CL/IDX B A

Once the clear on index bit is set, host software should clear the HOME flag and
start a slow velocity mode move in the desired direction. It may be necessary to poll a limit
switch and the index bit (CL/IDX) before motion is started so that motion is not started
when the system is already past the index detection position. The slow move towards
home will proceed normally until the desired edge of the index signal is detected. When
the Index signal is detected,the encoder count will be loaded from the HOMEPOSP
parameter, the profile generator will set the desired position to HOMEPOSP, the COI bit
in the counter control register will be cleared, and the home FLAG set true. If the
STOPATHOME flag is set, DESVEL will be set to 0, starting a controlled deceleration
toward 0 velocity at the programmed acceleration rate. If the STOPATHOME flag is not set
is not set, motion will continue, the host being responsible for changing the motion
parameters.

The secondary encoders cannot be used for homing, but can still be preset with any
desired count at index by setting the desired preset count in the HOMEPOSS and
initializing the secondary encoders counter control register as done above for the primary
encoder. To preset a encoder count without using index, The HOMEPOSP or HOMEPOSS
parameter is set to the desired count, and the hardware encoder counter is cleared by
writing the CL bit in the appropriate counter control register. The encoder count will be
loaded with HOMEPOSP or HOMEPOSS at the next sample time. As above, the DESPOS
parameter will be set to the HOMEPOSP value and the HOME flag set when the primary
encoder is preset. The presetting the secondary encoder has no such side effects.

SOFTDMC 35

Drive'KP(&E)%KI(j &E∆T)%KD(VELOCITY&ACTVEL)%KF1(VELOCITY)%KF2(ACCEL

OPERATION

PID LOOP

GENERAL
The second part of the motion controller firmware is the PID loop. The PID loop acts

as a feedback loop that keeps the actual position equal to the setpoint position.

The PID loops actual position and the setpoint position parameters are selected
with pointers to allow dual encoder feedback, encoder gearing, and ratioed multi-axis
moves.

Using pointers for the actual position reading also allows the use of absolute
encoders connected to one of the I/O ports.

The PID loop is enabled by setting the PID flag, and disabled by clearing the PID
flag. Clearing the PID flag does 2 things, it disables the PID loop, and sets the PWM value
to zero.

The pointers that the PID loop uses are POSENC, for the position encoder,
VELENC for the velocity encoder and FOLLOW for the setpoint position. The default value
of POSENC and VELENC are ENCP, the primary encoder for the axis. The default value
of FOLLOW is DESPOS, the desired position number from the profile generator. For
simple motion operations, the POSENC,VELENC, and FOLLOW pointers can be left at
their default settings. The PID loop is controlled by 6 main parameters:

KP Proportional term or Gain

KI Integral term

KD Derivative term or Damping

KF1 Velocity feed forward term

KF2 Acceleration feed forward term

KIL Integration limit

The output of the PID loop is the a drive signal that sets PWM and direction signals
that control the amount and direction of the current that is applied to the motor. The
simplified equation for this drive is:

Where E is the position error (SETPOINT POSITION - ACTUAL POSITION) .

SOFTDMC 36

OPERATION

PID LOOP

MAIN PARAMETERS
The six main PID parameters are called tuning parameters and have to be set to

match the dynamics of the controlled system.

 KP is the most important tuning parameter as it sets the over-all gain or "stiffness"
of the servo loop. The KP parameter determines how much restoring force is applied to the
motor relative to a given position error. If KP is too low, the overall servo accuracy will be
low. If KP is too high it will be hard to make the servo system stable. Depending on
encoder counts and load dynamics, values from 50 to 5000 are a reasonable range for KP.

KI is the integral parameter. A feedback loop with only a proportional term (KP) will
always have some remaining error caused by the fact that a finite error is necessary to
supply the drive needed to correct that error. In a real system with friction and static loads
and reasonable values of KP, this error can be significant. The Integral part of the PID loop
is used to accumulate small errors over many sample periods, creating a larger and larger
correcting drive so that even a small position error will eventually be corrected. This can
be useful where friction, spring, or gravity loads cause static error hard to correct with a
reasonable KP term.

The Integral term should be used carefully with dynamic loads and can cause
instability if not used with caution. One other problem with the integral term is what is
sometimes called ‘integral windup’. This happens for example when a position move is
made at a faster rate than the servo system can respond, since in this case the real
position will lag the desired position for the duration of the move, a large integral term will
have accumulated at the end of the move, causing a large, slow to recover overshoot as
the accumulated integral term counts are "deaccumulated" once the move is over.

The KIL term is a bound on the maximum size of the integral error term. It can help
eliminate integral windup, but does limit the amount of drive contributed by the integral
term. A KIL value of 32767 allows maximum drive from the integral term. A value of 16384
would limit integral related drive to ½ full scale.

KD is the Damping parameter. It is needed to make the servo system stable,
especially at high gains (high KP). The servo control loop is basically a second order linear
differential equation whose solution without the damping term is a sine wave. The damping
term contributes a exponential decay to the equation.

Higher values of KD are needed with higher values of KP. Higher values are also
needed with higher sample rates. This is because damping is dependent on KD and
ACTVEL, and the ACTVEL parameter is inversely proportional to the sample rate.
Reasonable values of damping are from ~200 to 65535 (max).

SOFTDMC 37

OPERATION

PID LOOP

FEEDFORWARD PARAMETERS
The next two terms are called feed-forward terms because they are not part of the

motion control feedback loop, that is they do not depend on the actual measured motion
but rather their values are calculated based on the desired motion profile.

KF1 is the velocity feed forward term. It supplies an amount of drive proportional to
the VELOCITY parameter. KF1 centers the operating point of the PID loop about the
current velocity. When moving at a high speed, a constant amount of motor drive must be
applied just to maintain the motor speed, but in order to apply this drive, a position error
must exist. This has the effect of causing the motor profile to lag the profile generators
position profile. This is corrected by making KF1 small positive number A reasonable value
for KF1 i ~1 to 100

KF2 is the acceleration feed forward term. It supplies an amount of drive
proportional to the profile generators acceleration value. Its purpose is to center the
operating point of the feedback loop when accelerating or deccelerating. It can be used to
compensate for the undershoot when starting a quickly accelerated motion and overshoot
when stopping. Note that due to fixed point math limitations, KF2 will only work properly
for acceleration values up to 2^23. This is normally not a real limitation as this represents
and acceleration value of > 200,000 RPM per S^2 with a 500 line encoder an a 4KHz
sample rate.

KF3 Is a velocity feed forward term for the drive phasor that is used in 2 and 3
phase motor drive configurations. Normally the drive phasor leads or lags the current
motor position by a fixed angle. At high speeds this fixed angle may be too small due to
the lag in motor current caused by motor inductance when rotational speeds and hence
drive frequencies are high. The KF3 parameter increases the fixed lead or lag angle by an
amount proportional to KF3 x Velocity. KF3 should be set to zero when SOFTDMC is used
with amplifiers or H-bridges that implement Field Oriented Control of drive angle.

SECONDARY PARAMETERS
KK is a signed bias on the PWM output. It can be used for zeroing servo amplifier

outputs, or as a feedforward term when operating into a fixed load (gravity for example)

KFF is a friction feed forward term that is used to overcome friction (stiction) in the
drive system. It supplies a selectable amount of drive in the direction of motion. It can also
be used to compensate for the deadzone that Hbridges generate with their blanking time.

SOFTDMC 38

KDF'1/(1&(KDFIL/65536))

OPERATION

PID LOOP

SECONDARY PARAMETERS
KDFIL is the derivative filter parameter. It sets the controlling coefficient in a

smoothing filter for the calculated velocity. The velocity term is always problematic in digital
servo loops because it is calculated from the change in position from one sample interval
to the next. The change in encoder readings at small velocities may be less than one count
per sample interval so the derivative term in the PID loop will alternate between 0 and 1
* KD, giving very coarsely quantized damping.

To reduce this quantization noise, the SOFTDMC incorporates a digital smoothing
filter that is applied to the measured velocity before it is used in the PID loop. The KDFIL
parameter determines the coefficients of a time weighted running average of the measured
velocity. Valid numbers for KDFIL are between 0 and 65535. If KDFIL is set to 0, no
filtering takes place. Larger values will result in lag in applying KD which may have a
negative effect on loop stability.

A reasonable starting value of KDFIL is 49152. This will make the filtered velocity
consist of one part current measured value and 3 parts that are the time weighted sum of
all previous velocity values. This will also increase the damping by a factor of 4. The
increase in damping factor contributed by KDFIL is:

Using a large value of KDFIL can reduce the acoustic noise from the motor during
slow moves that results from the coarse quantization of the damping.

MAXPWM While not strictly a tuning parameter, the MAXPWM parameter is part
of the PID loop and affects its operation. MAXPWM limits the maximum PWM value
applied to the motor drive. This can be used for torque limiting or keeping peak motor
current within specified limits. Setting MAXPWM slightly below full scale is also required
by some Hbridges to guarantee high side gate driver boostrap refresh. MAXPWM is an
unsigned 16 bit number. Setting MAXPWM to 65535 will allow full scale drive. This is the
MAXPWM default value. Setting MAXPWM to 16384 would result in a maximum PWM
value of 25% of full scale.

MAXPWM is also used for the excessive drive fault detection.

SOFTDMC 39

OPERATION

PID LOOP

FAULT CONDITIONS
There are several possible conditions that can cause loss of control or runaway

conditions in the PID control loop, with the possible result of harm to equipment or
personnel. One special task of the PID loop is to monitor the servo loops position error and
PWM drive signal to check for these system faults.

Faults caused by mechanical problems during normal motion can usually be
detected by using a small enough excessive position error limit to disable the PID loop and
shut down the PWM drive in this case.

Other faults include system connection and component failure. One obvious
connection related fault condition is reversed encoder or motor leads, resulting in positive
feedback and immediate runaway. This can be avoided by using keyed connectors to
prevent mis-assembly in the field. A small enough excessive position error limit will also
help in these cases.

A failed encoder or bad encoder connection, broken encoder wire, etc, can cause
runaway when the PID loop is simply holding a static position. The excessive position limit
does not help in this case since the PID loop is "blinded" and unable to see the motors
motion. The excessive drive detection can be used in this case to shut down the drive.

If more positive detection of electrical faults is needed, one option is to use an extra
encoder to detect motion when none is expected. This encoder can connect to one of the
alternate SOFTDMC encoder inputs, and be monitored by the host or event logic to detect
a runaway condition. This motion detection encoder can be as simple as a slotted wheel
with a single detector since we only need to detect an accumulation of counts where none
are expected and are not concerned with the direction of the counts. When a slotted wheel
is used, the alternate encoder would be used in UP/DOWN mode

 ERRORMASK

When an fault occurs, a bit specific to that fault will be set in the ERROR parameter.
The ERROR parameter is ANDed with the ERRORMASK parameter and if the result is not
zero, a fault sequence will be generated. The default ERRORMASK is 0xFFFF, so all error
types will cause a fault.

FAULT SEQUENCE
When an ummasked SOFTDMC error occurs, 1. The GO flag will be cleared, 2. The

PID flag will be cleared, which disables the PID loop and sets the PWM value to zero, and
finally 3. The ENA bit is cleared, allowing external hardware to detect the fault condition.

SOFTDMC 40

OPERATION

PID LOOP

EXCESSIVE POSITION ERROR
Excessive position error means that the absolute value of the PID loops error in

counts is greater than the EXPOSERR parameter for that axis. This can occur because
of a mechanical fault (stall), attempting to attain faster velocity or acceleration than the
mechanical system can deliver, PID filter values that result in unstable operation, or
electrical faults in the drive system. Having a reasonable value of excessive position
limit is a safety issue.

Note that the maximum excessive position error is 32767. An EXPOSERR value of
zero will disable excessive position error checking. This saves some time, so if excessive
position error detection is not needed, EXPOSERR should be set to zero.

When an excessive position fault occurs, bit 0 is set in the ERROR parameter.

EXCESSIVE DRIVE ERROR
Excessive drive means that the motor drive has reached its maximum allowed value

(MAXPWM) for a programmable number of sample periods. If the motor drive equals
MAXPWM, the DRIVERROR parameter is incremented by the DRIVEPLUS parameter. If
the motor drive is less than the MAXPWM, the DRIVEERROR parameter is decremented
by the DRIVEMINUS parameter. When DRIVEERROR is decremented, the count is
bounded at zero so that it does not underflow. If the 16 bit DRIVEERROR parameter
overflows, bit 1 is set in the ERROR parameter.

The separate DRIVEPLUS and DRIVEMINUS parameters allow the excessive drive
detection time constant to be tailored to the motion control system so that the fault is
detected in minimum time, but without generating false triggers. For example a
DRIVEPLUS parameter of 656 and a DRIVEMINUS parameter of 65535 would require 100
sample periods where drive equaled MAXPWM (and no periods when drive was less than
MAXPWM) to generate an error.

The excessive drive detection is valuable because it can detect fault conditions such as
a bad (non counting) encoder and shut down the affected motor.

SOFTDMC 41

OPERATION

PID LOOP

RECOVERY FROM FAULT CONDITIONS
To recover from a fault sequence, the fault cause must be cleared, The ERROR

parameter must be cleared, and then the motion system recovery can be done in two
different ways. One recovery option is to set the ENA bit and then do a complete re-homing
operation on the axis that has suffered the fault. This has the disadvantage that it may be
too time consuming to be practical. The other option is to read the current position (usually
ENCP), and set the desired position equal to the current position before proceeding with
re-enabling the PID loop and setting the ENA bit.

SOFTDMC 42

OPERATION

TUNING

DMCTUNE
The PID loop tuning parameters must be adjusted for each different

motor/load/amplifier combination. A tuning program (DMCTUNE.EXE) is provided with the
SOFTDMC firmware and allows manual adjustment of the main PID tuning parameters
while displaying the servo systems response. DMCTUNE displays 4 parameters: The
programmed motion profile (Green), The actual motion profile (Yellow), The motor drive
signal (Red) and the magnified error, that is the difference between programmed profile
and actual profile (Violet).

DMCTUNE uses four environment variables to determine I/O type. These
parameters are PROTOCOL, COMPORT, BAUDRATE and BAUDRATEMUL. Valid values
for PROTOCOL are BUS, HEX, and LBP. Valid values for COMPORT are COM1 through
COM99 Valid values for BAUDRATE are 9600,19200,38400,57600, or 115200. Valid
values for BAUDRATEMUL are 1 through 16.

If PROTOCOL IS BUS, DMCTUNE will attempt to access a PCI or PC/104
interfaced motion controller. For use with serial or USB interfaced SOFTDMC controllers,
the PROTOCOL parameter should be set to HEX for ASCII HEX serial interfaces and LBP
for interfaces that use the Little Binary Protocol. COMPORT and BAUDRATE parameters
need to be set appropriately for serially interfaced cards.

DMCTUNE COMMANDS:
UpArrow/DownArrow Chose parameter to change

RightArrow/LeftArrow Increment/decrement parameter 10%

End/PageDown Increment/decrement parameter 1%

M/m Set parameter to maximum

Z/z Set parameter to minimum

Insert Do step

Delete Erase trace screen

S/s Save current motor parameters to temp buffer

R/r Restore current motor parameters from temp buffer

E/e Export all parameters to file

SOFTDMC 43

OPERATION

DMCTUNE COMMANDS

I/i Import all parameters from file

L/l Print all parameters to ASCII list file

T/t Dump trace buffer to file

ALTX/Q/q Exit program

TUNING

TUNING PROCEDURE
It is suggested that the PID loop parameters be adjusted in the following order:

KP and KD: First the gain (KP) and damping (KD) should be adjusted. What you are
trying to do here is get the highest gain possible with a commensurate amount of damping
to prevent overshoot and ringing during a fast step. A fast step here means one that is
faster than the mechanics can follow. This is done by setting the acceleration and velocity
numbers very high (with the ‘M’ command).

The feed-forward terms are adjusted next.

Feedforward term KF1 should be adjusted next. KF1 in most needed with straight
voltage output PWM amplifiers (with no current feedback). With straight PWM amplifiers,
KF1 compensates for the motor back EMF, emulating current (torque) control. KF! Is
adjusted by setting the acceleration to something that the system can follow and setting
am moderate velocity, perhaps ½ full system speed. Then KF1 is slowly increased until the
servo system response matches as closely as possible to the profile it is following.

SOFTDMC 44

OPERATION

TUNING
Then KF2 is adjusted to compensate for the small lag at the beginning of a move

and small overshoot at the end. Note that the errors corrected by KF2 will be very small
unless you are doing quite fast moves, close to the dynamic limits of the servo system.
Adjusting KF2 is done by setting the velocity and acceleration for a fast move that reaches
slew velocity for about 3/4 of the move, thus the motion profile will have a first section (1/8
of the time total time) with constant positive acceleration, a middle section (3/4 of the total
time) with constant velocity (0 acceleration) and an end section (1/8 of the total time)with
constant negative acceleration. KF2 will only adjust the portions of the profile when
acceleration <> 0, that is during ramp-up and ramp-down.

Finally KI and KIL are adjusted. For best overall accuracy KI should be used for
correcting the last remaining error after all other PID tuning parameters have been
adjusted. The Integral term can reduce static error to 0 counts, and improve dynamic
(profile following) error. Too large an integral amount will result in instabilities. If the integral
term is not used, the integral limit (KIL) should be set to 0. This has the advantage of
bypassing the Integral part of the firmwares PID loop, speeding up the loop and allowing
higher sampling rates.

SOFTDMC 45

OPERATION

MULTIPHASE MOTOR OPERATION

GENERAL
SOFTDMC supports 2 phase and 3 phase motors. A specific SOFTDMC

configuration is required to support 2 phase or 3 phase motors and motor types cannot
currently be mixed in a single SOFTDMC configuration. The SOFTDMC configuration type
can be determined by reading the CONTROLTYPE parameter. A value of 1 indicates
support for brush type motors, a value of 2 for 2 phase and 3 for 3 phase. Additional
parameters need to be initialized to setup multiphase motors. Two phase step motors and
3 phase BLDC motors can also be operated in open loop mode (no encoder).

 STEP MOTOR SETUP
The first thing to initilaize is the motor current. This is set with parameters PHASEAI

and PHASEBI. These correspond to the A and B winding currents. When using the 7I32
Microstepping H-Bridge, a value of 65535 is equivalent to full scale current (either 1A or
3A depending on 7I32 jumpering). Normally the A and B currents are the same but can be
adjusted individually to compensate for driver or motor winding imbalances. For example
to set a motor current of 1.5A, you would select the 3A range of the 7I32 and then set
PHASEAI and PHASEBI to 32768. If you need to reverse the motor direction this can be
done VIA PHASESHIFT. PHASESHIFT is a flag that is normally false. Setting
PHASESHIFT true is the equivalent or reversing one of the motor leads. Due to non-
linearities of 7I32 drive current at low current levels, there is a dead zone in microstepping
position on open loop mode. This can be compensated for by adding a small fixed offset
current. This constant offset current is controlled by the OFFSETI parameter. The units of
OFFSETI are the same as PHASEAI and PHASEBI. A suggested value of OFFSETI for
the 7I32 is ~5% of the full scale current. The sum of OFFSETI and PHASEAI or PHASEBI
must not exceed 65535.

OPENLOOP MODE
Stepper motors and 3 phase BLDC motors can be operated in open loop mode. This

mode is the default for 2 phase motors. The OPENLOOP flag determines the operational
mode. When it is true, the motor phase currents are determined by DESPOS. A DESPOS
position change of 1024 results in a full phase rotation, which will rotate the motor 1 pole
position. The encoder count is still available in open loop mode if desired to verify stepper
position. PID must be enabled in open loop mode. Note that there is no position error or
excessive drive checking in open loop mode.

CLOSED LOOP MODE
Closed loop mode is enabled by setting OPENLOOP false. In closed loop mode the

motor drive currents and lead angle are determined by the magnitude and sign of the
position error. There are some parameters that must be initialized properly for multi-phase
close loop mode operation. The ENCODERCNT parameter is normally set to the number
of encoder counts per revolution. The ENCFACTOR is set to
RND((SINETABLESIZE*128*Motor Poles)/ENCODERCNT).

SOFTDMC 46

OPERATION

MULTIPHASE MOTOR OPERATION

 CLOSED LOOP MODE
The number of motor poles is equal to the number of magnetic poles on the motors

rotor. This number is 50 for a 200 whole step per revolution stepping motor and typically
2 or 4 for 3 phase synchronous motor.

 MECHANICAL PHASE ALIGNMENT
Each time SOFTDMC is started the encoder count must be aligned with the drive

current phase angle. Here is one simple way of doing this alignment for thwo pahse step
motors:

First disable PID so that the PWM values can be set by the host., then turn on motor
enable (ENA), next set the PWM value of PWMGENA to 0 and then PWMGENB to the
same value as PHASEBI. This will set the motor phase angle to 0. Now you must wait
some motor/load dependent time for the motion to settle. After the motion has settled,
MOTORPHASE should be set to 0. After this is done ENCP and DESPOS can be set to
any desired starting count value.

The procedure is slightly different for three phase synchronous motors. First disable
PID so that the PWM values can be set by the host., then turn on motor enable (ENA),
next set the PWMA, PWMB, PWMC to these values:

PWMA = SIN(0)*DRIVE*FS/2 + FS/2 = 32767

PWMB =SIN(120)*DRIVE*FS/2 + FS/2 = 61146 for 100% drive

PWMC =SIN(240)*DRIVE*FS/2 + FS/2 = 4389 for 100% drive

This will set the motor phase angle to 0. Now you must wait some motor/load
dependent time for the motion to settle. After the motion has settled, MOTORPHASE
should be set to 0. After this is done ENCP and DESPOS can be set to any desired
starting count value. Note that the above PWM values assume locked anti-phase Hbridge
operation where a PWM value of ½ full scale = 32767 = 0 drive. For a simple Locked anti-
phase driver like our 7I39, DRIVE should be limited to .1 or less, since there is no working
feedback at this point and current will be the same as locked rotor currents.

ELECTRICAL PHASE ALIGNMENT
There are several conditions that are required for correct closed loop operation of

multiphase moors. The first thing is to wire the encoder so that the encoder counts in
desired direction. Next, the PHASELEAD may need to be inverted to be able to close the
feedback loop. For example the default value of PHASELEAD is 256 for 2 phase
configuration. In order to reverse the drive, PHASELEAD can be changed to -256. Once
the feedback loop is closed the PHASESHIFT flag may need to set if the drive is "coggy".
Changing PHASESHIFT may require re-inverting PHASELEAD.

SOFTDMC 47

OPERATION

EVENT LOGIC

GENERAL
SOFTDMC has an extremely flexible built in, real time (within one sample period)

event logic system for handling internal and external events. These events include limit
switch actuation, position/velocity/acceleration or time breakpoints, external hardware
events, the host setting or clearing a flag etc etc. The result of an event can be starting a
motion profile, aborting a motion profile, loading new acceleration or velocity parameters,
Motion register block pointer updates, PID filter block pointer updates, interrupt generation,
I/O bit manipulation, do gearing with a 32 bit ratio between axis. etc etc. Events can also
be used to change the way the Profile generator or PID loop operate.

WHAT EVENTS DO
Events can perform logical operations, 16 bit and 32 bit addition, 16 and 32 bit

subtraction, 16 and 32 bit multiplication, 32 bit division and 32 bit square root.. Subtraction
events can be used to perform 16 or 32 bit compares, and the addition events can be used
to perform 16 or 32 bit copies.

All events can be unconditional or conditionally executed. Normally, unconditional
events are used for operations that must occur every sample period, or for test or compare
operations. Unconditional events set two flags (Zero and Carry) that can be used by
subsequent conditional events. Conditionally executed events are used for operations that
should only happen when specific conditions exist. Conditionally executed events do not
change the state of the flags, allowing multiple conditional events to use the flags
generated by a single unconditional operation.

Conditional events are only executed if specified condition is matched. Conditional
events can be Level or Delta triggered. Level triggering means the conditional operation
is always performed (once per sample) when the desired condition is matched. Delta
triggering means that the if the condition was false in the previous sample period and true
in the current period, the operation will be performed (This is sometimes referred to as
edge triggered).

Delta triggering is useful for operations that should only happen once, when a
particular condition becomes true, for example, generating an interrupt when a limit switch
is actuated. Level triggering is useful for operations that should continue as long as the
tested condition is true, for example turning on an output bit to control a paint solenoid only
when the velocity is greater than a desired setpoint velocity.

SOFTDMC 48

OPERATION

EVENT LOGIC

LOGICAL EVENTS
Logical events perform 16 bit wide logical operations on a chosen parameter.

Logical events have two parameter pointers, a source and a destination. Logical events
consist of a block of six 16 bit words:

EventOpcode Opcode for the logical event

EventSRC1 Source address pointer

EventXOR XOR mask

EventAND AND mask

EventOR OR mask

EventDest Destination address pointer

Logical operations proceed as follows:

1. If the operation is conditional, check the flags for the desired condition. If the condition
 is not met got step 8 otherwise continue at step 2

2. If the event is delta triggered, check the history bit in the event, if it is true, goto
step 8, otherwise continue at step 3.

3. The parameter is fetched via the EventSRC1 pointer to TEMP

4. TEMP is XORed with the EventXOR parameter

5. TEMP is ANDed with then EventAND parameter

6. TEMP is Ored with the EventOR parameter

7. TEMP is written back to the parameter pointed to by EventDest

8. If the tested condition was true, set the history bit in the event, otherwise clear it.

Logical events can be used to set, clear or toggle bits in control registers or I/O ports.

9. If the event was unconditional, set the Zero flag based on the value in TEMP

SOFTDMC 49

OPERATION

EVENT LOGIC

ARITHMETIC EVENTS
Arithmetic events perform an arithmetic operation. All parameters in arithmetic

events are indirect, that is the event block contains pointers to the source1, source2 and
destination of the operation. Arithmetic event blocks consist or six 16 bit words:

EventOpcode Event opcode

EventSrc1 Source1 parameter pointer

EventSrc2 Source2 parameter pointer or copy word count

EventFree1 Unused, can be use to store 16 bit data

EventFree2 Unused, can be use to store 16 bit data

EventDest Destination parameter pointer

Arithmetic operations proceed as follows:

1. If the operation is conditional, check the flags for the desired condition. If the
condition is not met got step 7 otherwise continue at step 2

2. If the event is delta triggered, check the history bit in the event, if it is true, goto
step 8, otherwise continue at step 3.

3. The Source1 parameter is fetched via the EventSrc1 pointer

4. The Source2 parameter is fetched via the EventSrc2 pointer

5. The arithmetic operation is performed - for subtracts, Source2 is subtracted from
 Source1.

6. The result of the arithmetic operation is written to the location pointed to by the
 EventDest pointer.

7. If the tested condition was true, set the history bit in the event, otherwise clear it. .

8. If the event was unconditional, set the Zero and Carry flags based on the result of the
 arithmetic operation. Multiply operations do not change the flags.

SOFTDMC 50

OPERATION

EVENT LOGIC

ARITHMETIC EVENTS
Arithmetic events can be used for 16 or 32 bit compares (by using subtract), gearing

(One event for multiply and one for 32 bit add), Allowing hand control of motion via the
secondary encoder inputs, event counting, and adding new features to the Profile
generator or PID loop.

For 32 bit Arithmetic events, the source and destination pointers point to the least
significant word of the data, the most significant words being at pointer +1 (This is the
standard word order for all SOFTDMC parameters).

COPY EVENTS
Copy events allow from 1 to 1024 words to be block copied from the EventSrc1

location to the EventDest location. EventSrc2 is used as the count of words to be copied.
Words are copied in low to high order, so for example a copy of 3 words would proceed as
follows:

* EventSrc1 -->* EventDest

*EventSrc1+1 --> *EventDest+1

*EventSrc1+2 --> *EventDest+2

USING CONDITIONAL EVENTS
Conditional events require a preceding unconditional event to set the flags. The

most common unconditional events used to set the flags are logical and subtract events.
Logical events only set the Zero flag, the carry flag is indeterminate after an unconditional
logical event. Unconditional Add and subtract events update both the Zero and Carry flags.
Flags are indeterminate after unconditional Multiply events. If an unconditional event is
used to set flags and the result is not needed, the EventDest pointer should point to
NullLoc.

The conditional event Opcodes contain mask and complement bits that operate on
the flag bits to determine whether the conditional event should be executed.

SOFTDMC 51

OPERATION

EVENT LOGIC

EVENT OPCODES
The header files supplied with SOFTDMC include opcodes for common unconditional and
conditional events.

UNCONDITIONAL EVENTS
EventAdd Unconditional 16 bit add

EventAdd32 Unconditional 32 bit add

EventSub Unconditional 16 bit subtract

EventSub32 Unconditional 32 bit subtract

EventMul16x16to16 Unconditional 16x16 bit multiply - lo 16 bits of result stored

EventMult32x32Lo Unconditional 32x32 bit multiply - lo 32 bits of result stored

EventMult32x32Hi Unconditional 32x32 bit multiply - hi 32 bits of result stored

EventMult32x32to64 Unconditional 32x32 bit multiply - all 64 bits of result stored

EventDiv Unconditional 64/32 bit divide - 32 bit result

EventSqrRoot Unconditional 64 bit square root - 32 bit result

EventLogical Unconditional 16 bit Logical

EventCopy Unconditional copy

SOFTDMC 52

OPERATION

EVENT LOGIC

 CONDITIONAL EVENTS

EventAddIf Conditional 16 bit add

EventAdd32If Conditional 32 bit add

EventSubIf Conditional 16 bit subtract

EventSub32If Conditional 32 bit subtract

EventMul16x16to16If Conditional 16x16 bit multiply - lo 16 bits of result stored

EventMult32x32LoIf Conditional 32x32 bit multiply - lo 32 bits of result stored

EventMult32x32HiIf Conditional 32x32 bit multiply - hi 32 bits of result stored

EventMult32x32to64If Conditional 32x32 bit multiply - all 64 bits of result stored

EventDivIf Conditional 64/32 bit divide - 32 bit result

EventSqrRootIf Conditional 64 bit square root - 32 bit result

EventLogicalIf Conditional 16 bit Logical

EventCopyIf Conditional copy

SOFTDMC 53

OPERATION

EVENT LOGIC

DELTA TRIGGERED CONDITIONAL EVENTS

EventAddIfDel DelConditional 16 bit add

EventAdd32IfDel DelConditional 32 bit add

EventSubIfDel DelConditional 16 bit subtract

EventSub32IfDel DelConditional 32 bit subtract

EventMul16x16to16IfDel DelConditional 16x16 bit multiply - lo 16 bits of result stored

EventMult32x32LoIfDel DelConditional 32x32 bit multiply - lo 32 bits of result stored

EventMult32x32HiIfDel DelConditional 32x32 bit multiply - hi 32 bits of result stored

EventMult32x32to64IfDel DelConditional 32x32 bit multiply - all 64 bits of result stored

EventDivIfDel DelConditional 64/32 bit divide - 32 bit result

EventSqrRootIfDel DelConditional 64 bit square root - 32 bit result

EventLogicalIfDel DelConditional 16 bit Logical

EventCopyIfDel DelConditional copy

SOFTDMC 54

OPERATION

EVENT LOGIC

 CONDITION MODIFIERS
The opcodes of conditional events are Ored with specific flag modifiers to select the

desired condition:

EventZero if result of logical or arithmetic operation was Zero

EventNotZero if result of logical or arithmetic operation was not Zero

EventCarry if the add or subtract caused a carry

EventNotCarry if the add or subtract did not cause a carry

The following composite constants assume that the unconditional event that set the flags
was a subtract:

EventGT if @EventSRC1 > @EventSRC2

EventLT if @EventSRC1 < @EventSRC2

EventGTEQ if @EventSRC1 is >= @EventSRC2

EventLTEQ if @EventSRC1 is <= @EventSRC2

EventEQ if @EventSRC1 is = @EventSRC2

EventNEQ if @EventSRC1 is <> @EventSRC2

SOFTDMC 55

OPERATION

EVENT LOGIC

GLOBAL AND LOCAL (AXIS) EVENTS
Event blocks are available in both AXIS memory and GLOBAL memory. GLOBAL

events only have access to global memory, axis events have access to the current axis
and global memory. The number of active global events is determined by the GEVENTS
parameter. The number of active axis events is determined by the EVENTS parameter.
Events in AXIS memory share space with motion and filter blocks, so you must be careful
not to allocate an axis event on top of an existing filter or motion control block. If EVENTS
or GEVENTS is <>0 then all axis events or global events from 1 to EVENTS or GEVENTS
are enabled. Event blocks are allocated from low memory to high, starting with event 1.
You should not activate a event without properly initializing all fields or unpredictable
behavior can result. All event blocks consist of six 16 bit words. Events are processed in
sequence, that is, event 1 is processed before event 2. This sequence is important when
the operation part of one event affects subsequent events, or precise timing is needed. For
example, if event 1 sets an I/O bit and event 2 clears the I/O bit, the I/O bit will be only be
set for one event time = ~700 nS. If on the other hand event 2 sets an I/O bit and event 1
clears it, the I/O bit will remain set for 1 sample period.

MULTI-AXIS GEARING WITH EVENTS
The multiply event and the subtract event can be combined to gear one axis to

another. If gearing is started at location 0, no subtract is needed unless a fixed offset is
required. Normally for gearing, the fastest axis is used as the master and the slower axis
is the slave. Assuming both master and slave start at 0, gearing is set up as follows:

An unconditional multiply event (EventMult32X32Hi) is created that takes the
masters DESPOS (*EventSrc1), multiplies it it by the gearing ratio (*EventSRC2/2^32) and
stores the result in a free global 32 bit location (*EventDest). Then the FOLLOW parameter
for the slave axis is set to point to *EventDest. This will give gearing ratios from 0 to almost
1 with 32 bit accuracy.

For integer gear ratios that require absolute accuracy, both master and slave axis
can be scaled by different ratios. For example for an absolute 5/7 ratio, The master axis
could be geared with the ratio (7*K) to its own DESPOS parameter, and the slave axis
could be geared to (5*K). K is calculated so that the master axis self-gearing ratio is close
to one: Trunc((2^32-1)/MasterRatio) or 4294967295 / 7 in the example above.

To start gearing from arbitrary positions, a subtract event is needed along with the
multiply event so that the geared positions start out matching their ungeared positions. If
this is not done, a large uncontrolled move will be generated when the FOLLOW pointer
is changed.

SOFTDMC 56

OPERATION

MOTION PARAMETER BLOCKS

GENERAL
The main motion controlling registers are accessed via a pointer and therefore it is

possible to allocate multiple motion control blocks, and change between them by changing
a single pointer.. The standard implementations of SOFTDMC can have room for up to 8
motion control blocks in addition to the default block. Make sure that you do not allocate
overlapping blocks! Register blocks are allocated from high memory down to low memory,
to allow a mix of events and register blocks to co-exist. The default motion control block
is allocated in axis memory and does not use any event/user RAM.

Note: if you do not need to quickly change all motion parameters for an axis, the indirect
block nature of the motion parameters can be ignored.

Each motion control block contains the following parameters:

MOTION CONTROL PARAMETERS
DESPOSF LONG AXIS Fractional part of DESPOS (<1 count)

DESPOS LONG AXIS Desired Position

VELOCITY LONG AXIS Profile velocity (8.24 counts/sample)

ACCELF INT AXIS Fractional part of 48 bit ACCEL (32.16)

ACCEL LONG AXIS Profile Acceleration

JERK LONG AXIS Profile Jerk (Delta ACCEL)

BREAKPOINT LONG AXIS Breakpoint value for this block

NEXTPROBLOCK PTR AXIS Pointer to next profile block (or user
variable)

NEXTPOS LONG AXIS Next position for internal profile generator

SLEWLIMIT LONG AXIS S l e w s p e e d d u r i n g m o v e
(counts/2^24/sample)

SOFTDMC 57

OPERATION

MOTION PARAMETER BLOCKS

MOTION CONTROL PARAMETERS
The first six parameters in the block are standard motion control parameters and are

discussed in the PID LOOP and PROFILE sections of this manual. The last 4 parameters
control the operation of the motion control blocks.

SOFTDMC 58

OPERATION

FILTER PARAMETER BLOCKS

GENERAL
Like the motion control registers, The filter parameters are accessed via a pointer

and therefore it is possible to allocate multiple blocks of filter parameters, and change
between them by changing a single pointer.. The standard implementations of SOFTDMC
can have room for up to 9 filter parameter blocks in addition to the default filter block.

Note: if you do not need to quickly change all filter parameters for an axis, the indirect
block nature of the filter parameters can be ignored.

Each filter parameter block contains the following parameters:

PID LOOP TUNING PARAMETERS
KK UINT AXIS PWM offset or bias

KP UINT AXIS Proportional constant

KD UINT AXIS Derivative constant

KA UINT AXIS Not used

KI LONG AXIS Integral constant

KIL UINT AXIS Integral limit

KF1 UINT AXIS Velocity feed forward term

KF2 UINT AXIS Acceleration feed forward term

KF3 UINT AXIS Phasor velocity Feed forward

KFF UINT AXIS Friction feed forward term

KDFIL UINT AXIS Derivative term filter coefficient

DRIVEPLUS UINT AXIS Amount added to DRIVEERROR

DRIVEMINUS UINT AXIS Amount subtracted from DRIVERROR

NEXFILBLOCK PTR AXIS Pointer to next filter block or user variable.

SOFTDMC 59

OPERATION

USER PARAMETERS

GENERAL
 A number of parameters and utility functions are available for debugging and user
applications. The hardware utilities (LEDs and speaker) are only available on certain
platforms

LEDS
Some SOFTDMC FPGA platforms have debug LEDS on the circuit card that can

be useful for debugging and monitoring. The LEDs can be programmed to display the N
least significant bits (where N is the number of available LEDs) of any global or axis
parameter. Two parameters control the LEDs, LEDAXIS and LED. LEDAXIS specifies
which axis is monitored, it is a dont-care value for global parameters. LED is a pointer the
specifies the parameter to monitor. If LED is zero (a null pointer) the LEDs will not be
driven. The LEDs are updated once per sample period.

SPEAKER
Some SOFTDMC FPGA platforms have a simple I/O bit controlled Speaker. A

single pointer (BEEPER) determines which parameter drives the speaker. The most
significant bit (B15) of the parameter that BEEPER points to determines whether the
speaker current is enabled or disabled. If BEEPER is zero (a null pointer) the speaker will
not be driven. The speaker bit is updated once per sample period

PHASE ACCUMULATOR
The user phase accumulators are 32 bit accumulators that have a constant 32 bit

value added every sample period. They can be used for general timing tasks, or in
conjunction with the event logic for rate generation, timeouts etc, etc. There is one phase
accumulator available per axis, plus one global phase accumulator. Each phase
accumulator has two 32 bit parameters, the phase constant that is added every sample,
and the actual accumulator. The per axis phase constant is called PHASEK and the per
axis phase accumulator is called PHASEA. The global phase constant is called GPHASEK
and the global phase accumulator is called GPHASEA.

SOFTDMC 60

SAMPLERATE(PHASEK/232

OPERATION

USER PARAMETERS

PHASE ACCUMULATOR
As an example of phase accumulator usage, here is one way to setup a rate

generator: Say we want to generate a host interrupt once per second, and that we have a
10 KHz sample rate. The MSB (bit 31) of the phase accumulator will toggle at a frequency
of:

So we choose a PHASEK of 2^32/10 KHz (~429497) for a one second toggle rate
of the PHASEA MSB. Then we initialize the interrupt control register (IRQREG) to select
the desired interrupt. Finally we set up a edge mode logical event that sets the SETIRQ
flag on the rising edge of the PHASEA MSB. The interrupt service routine would then write
to the CLRIRQ flag to clear the IRQ.

Note that the though average frequency of the generated 1 Hz signal is very
accurate (XTAL accuracy basically) there is a one sample period jitter (1/10KHz = 100
uSec in this example) in the generated rate.

Another example of phase accumulator usage is the DMCTUNE program.
DMCTUNE uses the global phase accumulator to set the sample rate for collecting
accurately timed samples of the internal parameters during motion, offloading this critical
timing task from the host.

SOFTDMC 61

OPERATION

DEMONSTRATION SOFTWARE

RP, WP AND WF and EVENT COMMAND LINE UTILITIES
Four simple command line utilities are provided for manually reading and writing

SOFTDMC parameters, installing FIFO wait tokens, and installing events These utilities
are RP, WP, WF, and EVENT. RP reads a parameter, WP writes a parameter, WF installs
a Wait token in the FIFO and EVENT installs an event.

ENVIRONMENT VARIABLES
RP, WP, WF, and EVENT rely on four environment variables to determine I/O type.

These parameters are PROTOCOL, COMPORT, BAUDRATE, and BAUDRATEMUL Valid
values for PROTOCOL are BUS, HEX, and LBP. Valid values for COMPORT are COM1
through COM99 Valid values for BAUDRATE are 9600,19200,38400,57600, or 115200.
Valid values for BAUDRATEMUL are 1 through 16.

If PROTOCOL is BUS, the utilities will attempt to access a PCI or PC/104 interfaced
motion controller. For use with serial or USB interfaced SOFTDMC controllers, the
PROTOCOL parameter should be set to HEX for ASCII HEX serial interfaces and LBP for
interfaces that use the Little Binary Protocol. COMPORT and BAUDRATE parameters
need to be set appropriately for serially interfaced cards. For example to access a serial
card with HEX ASCII interface and a standard speed serial card:

SET PROTOCOL=HEX

SET BAUDRATE=115200

SET COMPORT=COM2

SET BAUDRATEMUL=1

Would cause the RP, WP, or WF utility to use the serial interface on COM2 at
115200 baud to communicate to SOFTDMC, while:

SET PROTOCOL=BUS

Would cause the utilities to communicate with the SOFTDMC hardware on the host
computers PC/104 or PCI bus.

SOFTDMC 62

OPERATION

DEMONSTRATION SOFTWARE

 RP
The RP utility reads a parameter from SOFTDMC. It uses symbolic names for the

parameters so numeric constants do not need to be memorized, for example

RP DESPOS 3

Would read the DESPOS parameter for Axis 3. If the axis parameter is omitted, RP
reads the parameter from Axis 0, so

RP ENCP

Would read the ENCP parameter from Axis 0. Also note that the axis value is don’t
care for global parameters, so the axis value can be omitted for all global parameter reads.

The RP utility uses the IFIFO by default but can optionally use the QFIFO for
communicating with SOFTDMC. This is done by putting a ‘Q’ on the command line:

RP MAXPWM 6 Q

RP GO Q

RP can print parameter values in Hexdecimal if desired by putting an ‘H’ on the
command line after the parameter name:

RP PORTA H

RP knows the parameter size (16 or 32 bit) and parameter type (signed or
unsigned)from its symbol table so it reads and prints parameters in the proper format.

SOFTDMC 63

OPERATION

DEMONSTRATION SOFTWARE

 RP
RP can also read and print a parameter continuously if desired. This is done by

putting a ‘R’ on the command line after the parameter name:

RP ENCP R

All the command modifiers can be combined in a single command if desired:

RP PORTA 2 R H Q

 WP
The WP utility writes a parameter to SOFTDMC. It uses symbolic names for the

parameters so numeric constants do not need to be memorized, for example

WP KP 300 5

Would set the KP parameter for Axis 5. If the axis parameter is omitted, WP writes
the parameter to Axis 0, so

WP GO 65535

Would set GO for Axis 0.

The WP utility has the same QFIFO option as RP

WP NEXTPOS 1234 3 Q

Would set the NEXTPOS parameter for axis 3 to 1234, using the QFIFO. WP also
has the H (Hex) option to allow the use of Hexadecimal parameter values:

WP PORTA 0FFE H

Would write the Hexdecimal value 0xFFE to I/O port A.

WP knows the parameter size (16 or 32 bit) and parameter type (signed or
unsigned) from its symbol table so it writes parameters in the proper format.

SOFTDMC 64

OPERATION

DEMONSTRATION SOFTWARE

WF
The WF utility writes a WaitOn FLAG to the specified FIFO. For example:

WF GO 2

Would write a Wait-On-(Axis 2 GO) flag in the IFIFO.

WF MOTION 3 Q

Would write a Wait-On(Axis 3 MOTION) flag in the QFIFO. Note that the behavior
of the Wait FLAGS depends on the per axis parameters FLAGXOR and FLAGAND.

WF PHASEA+1 1

Would write a Wait-On(Axis 1 PHASEA) flag in the IFIFO. Note that an offset can
be appended to the parameter name (with no spaces). We are able to access the high
word of PHASEA by using an offset of 1 in this example

The following example sequence does a axis 2 move, waits for the move to
complete, waits 100000 sample times, and then does another move:

WP FLAGXOR FFFF H 2

(FLAGXOR is set to FFFF: we are waiting for the watched parameter to become 0)

WP FLAGAND 8000 H 2

(8000 hex works for sensing flags and also looking for MSB of PHASEA)

WP NEXTPOS 50000 2

(we are going to position 50000)

WP GO -1 2

(start a motion)

WF GO 2

(wait for GO to clear when motion is done)

SOFTDMC 65

OPERATION

DEMONSTRATION SOFTWARE

WF
WP PHASEA 8001869F 2

(99,999 more than 80000000 H)

 WP PHASEK -1 2

(Count down)

WF PHASEA+1 2

(wait for PHASEA MSB to become 0 = 100000 counts = 100000 sample times)

WP NEXTPOS 0 2

(we are going to 0 next)

WP GO -1 2

(start move towards 0)

WF GO 2

(wait for move to complete)

Note that running the previous sequence of commands would place the commands
in SOFTDMC’s FIFO, after which the host is not involved in the motions or delay, that is
the command line example programs are asynchronous and do not wait for SOFTDMC
other than to pause processing if the QCDFIFO or ICDFIFO is half full.

SOFTDMC 66

 OPERATION

DEMONSTRATION SOFTWARE

EVENT
The EVENT utility allows command line installation of events. EVENT uses symbolic

names for source and destination addresses and event op codes. Because logical and
arithmetic events have different syntax, the command line parameters are parsed
differently depending on event type. For logical events, the command line syntax is:

EVENT OPCODE COND SRC XOR AND OR DEST NUMBER TYPE AXIS

Where OPCODE is a symbolic event opcode, COND is a symbolic opcode modifier
if the OPCODE is conditional, SRC is a symbolic parameter name, XOR, AND, OR are
16 bit Hexadecimal values, DEST is a symbolic parameter name, NUMBER is the event
number, TYPE is G for Global events and A for Axis events, and AXIS is the axis number
for axis events. For example the following sequence:

WP EVENTS 0 0

(Disable events when we are loading them)

EVENT EventLogical ERROR 0000 FFFF 0000 NULL 1 A 0

(Unconditional logical event to set the flags based on ERROR)

EVENT EventLogicalIfDel EventNotZero NULL 0000 0000 0001 IRQCause 2 A 0

(Conditional logical event to set bit 0 of IRQCause register if ERROR is true)

WP EVENTS 2 0

(Enable both events when we are done loading them)

Would install 2 events, the first event is an unconditional logical event that monitors
ERROR and sets the Event flags accordingly, and the second event, a conditional event
that writes data to the IRQCause register if the Event flags indicate a non zero result, that
is, if ERROR is not zero.

SOFTDMC 67

 OPERATION

DEMONSTRATION SOFTWARE

EVENT

The following set of events would set the LSb of PORTA whenever (axis 0)
DESPOS was greater than MYBREAK :

WP EVENTS 0 0

(Disable events when we are loading them)

EVENT EventSub32 DESPOS MYBREAK 0000 0000 NULL 1 A 0

(Unconditional subtract event to set the flags)

EVENT EventLogicalIf EventGT PORTA 0000 FFFE 0001 PORTA 2 A 0

(Conditional logical event to set I/O bit if DESPOS > MYBREAK)

EVENT EventLogicalIf EventLTEQ PORTA 0000 FFFE 0000 PORTA 3 A 0

(Conditional logical event to clear I/O bit if DESPOS <= MYBREAK)

WP EVENTS 3 0

(Enable all three events when we are done loading them)

SOFTDMC 68

REFERENCE INFORMATION

PINOUTS

Most Mesa FPGA cards use 50 pin headers as I/O connectors. The following tables
show the pin order for the more common SOFTDMC configuration when used with Mesa
FPGA cards and Mesa interface/driver cards.

When a pin function has for example a (0,4) suffix, this means that the on the first
50 pin connector, the pin would connect to axis 0 and on a second connector, the same
pin would connect to axis 4.

BRUSH MOTOR PINOUT
This pinout is used for the 7I30 and 7I40 brush motor drivers, plus the 7I33 servo

amplifier interface card. Four axis are supported by each 50 pin connector. Note that the
7I40 is only a 2 axis driver card but the 7I40 can select whether it connects to motor 0,1
signals or motor 2,3 signals, allowing two 7I40s to be daisy chained on a single 50 pin
cable.

FUNCTION DIR HEADER 50 PIN

B(1,5) TO FPGA 1

A(1,5) TO FPGA 3

B(0,4) TO FPGA 5

A(0,4) TO FPGA 7

IDX(1,5) TO FPGA 9

IDX(0,4) TO FPGA 11

PWM(1,5) FROM FPGA 13

PWM(0,4) FROM FPGA 15

DIR(1,5) FROM FPGA 17

DIR(0,4) FROM FPGA 19

ENA(1,5) FROM FPGA 21

ENA(0,4) FROM FPGA 23

SOFTDMC 69

REFERENCE INFORMATION

PINOUTS

BRUSH MOTOR PINOUT (continued)

FUNCTION DIR HEADER 50 PIN

B(3,7)) TO FPGA 25

A(3,7) TO FPGA 27

B(2,6) TO FPGA 29

A(2,6) TO FPGA 31

IDX(3,7) TO FPGA 33

 IDX(2,6) TO FPGA 35

PWM(3,7) FROM FPGA 37

PWM(2,6) FROM FPGA 39

DIR(3,7) FROM FPGA 41

DIR(2,6) FROM FPGA 43

ENA(3,7) FROM FPGA 45

ENA(2,6) FROM FPGA 47

SOFTDMC 70

REFERENCE INFORMATION

PINOUTS

7I32 STEP MOTOR PINOUT
This pinout is used by the 7I32 microstepping drive. The 7I32 uses sine and cosine

PWM drive from the controller that set the step motor drive current. The 7I32 pinout
supports 2 step motors per 50 pin connector.

FUNCTION DIR HEADER 50 PIN

CCCOS(0,2,4,6) FROM FPGA 1

CCSIN(0,2,4,6) FROM FPGA 3

B(0,2,4,6) TO FPGA 5

A(0,2,4,6) TO FPGA 7

ALTIDX(0,2,4,6) FROM FPGA 9

IDX(0,2,4,6) FROM FPGA 11

PWMCOS(0,2,4,6) FROM FPGA 13

PWMSIN(0,2,4,6) FROM FPGA 15

DIRCOS(0,2,4,6) FROM FPGA 17

DIRSIN(0,2,4,6) FROM FPGA 19

ENACOS(0,2,4,6) FROM FPGA 21

ENASIN(0,2,4,6) FROM FPGA 23

SOFTDMC 71

REFERENCE INFORMATION

PINOUTS

7I32 STEP MOTOR PINOUT (Continued)

FUNCTION DIR HEADER 50 PIN

CCCOS(1,3,5,7) FROM FPGA 25

CCSIN(1,3,5,7) FROM FPGA 27

B(1,3,5,7) TO FPGA 29

A(1,3,5,7) TO FPGA 31

ALTIDX(1,3,5,7) FROM FPGA 33

IDX(1,3,5,7) FROM FPGA 35

PWMCOS(1,3,5,7) FROM FPGA 37

PWMSIN(1,3,5,7) FROM FPGA 39

DIRCOS(1,3,5,7) FROM FPGA 41

DIRSIN(1,3,5,7) FROM FPGA 43

ENACOS(1,3,5,7) FROM FPGA 45

ENASIN(1,3,5,7) FROM FPGA 47

SOFTDMC 72

REFERENCE INFORMATION

PINOUTS

7I41 STEP MOTOR PINOUT
This pinout is used for the 7I41. The 7I41 is a step motor driver that uses step and

direction inputs (it contains a microstepping translator). The 7I41 interface also uses a SPI
serial port to communicate setup information to the 7I41, thereby saving interface pins. The
7I41 pinout supports 2 axis on each 50 pin connector.

FUNCTION DIR HEADER 50 PIN

/FRAME FROM FPGA 1

SCLK FROM FPGA 3

SDIN FROM FPGA 5

SDOUT TO FPGA 7

LIMITB(1,3,5,7) TO FPGA 9

LIMITA(1,3,5,7) TO FPGA 11

QIDX(1,3,5,7) TO FPGA 13

QB(1,3,5,7) TO FPGA 15

QA(1,3,5,7) TO FPGA 17

RESET(1,3,5,7) FROM FPGA 19

ISEL(1,3,5,7) FROM FPGA 21

/ENA(1,3,5,7) FROM FPGA 23

DIR(1,3,5,7) FROM FPGA 25

STEP(1,3,5,7) FROM FPGA 27

SOFTDMC 73

REFERENCE INFORMATION

PINOUTS

7I41 STEP MOTOR PINOUT (Continued)

FUNCTION DIR HEADER 50 PIN

LIMITB(0,2,4,6) TO FPGA 29

LIMITA(0,2,4,6) TO FPGA 31

QIDX(0,2,4,6) TO FPGA 33

QB(0,2,4,6) TO FPGA 35

QA(0,2,4,6) TO FPGA 37

RESET(0,2,4,6) FROM FPGA 39

ISEL(0,2,4,6) FROM FPGA 41

/ENA(0,2,4,6) FROM FPGA 43

DIR(0,2,4,6) FROM FPGA 45

STEP(0,2,4,6) FROM FPGA 47

SOFTDMC 74

REFERENCE INFORMATION

PINOUTS

THREE PHASE PINOUT
This pinout is used by the 7I39 three phase Hbridge. Two axis are supported per 50

pin connector. If I/O port A/B is not available on the FPGA configuration, the secondary
encoder inputs are available on the HALLA through HALLC inputs.

FUNCTION DIR HEADER 50 PIN

A(0,2,4,6) TO FPGA 1

B(0,2,4,6) TO FPGA 3

IDX(0,2,4,6) TO FPGA 5

HALLA/SA(0,2,4,6) TO FPGA 7

HALLB/SB(0,2,4,6) TO FPGA 9

HALLC/SIDX(0,2,4,6) TO FPGA 11

SENSEA(0,2,4,6) TO FPGA 13

SENSEB(0,2,4,6) TO FPGA 15

ENA(0,2,4,6) FROM FPGA 17

PWMA(0,2,4,6) FROM FPGA 19

PWMB(0,2,4,6) FROM FPGA 21

PWMC(0,2,4,6) FROM FPGA 23

SOFTDMC 75

REFERENCE INFORMATION

PINOUTS

THREE PHASE PINOUT (Continued)

FUNCTION DIR HEADER 50 PIN

A(1,3,5,7) TO FPGA 25

 B(1,3,5,7) TO FPGA 27

IDX(1,3,5,7) TO FPGA 29

HALLA/SA(1,3,5,7) TO FPGA 31

HALLB/SB(1,3,5,7) TO FPGA 33

HALLC/SIDX(1,3,5,7) TO FPGA 35

SENSEA(1,3,5,7) TO FPGA 37

SENSEB(1,3,5,7) TO FPGA 39

ENA(1,3,5,7) FROM FPGA 41

PWMA(1,3,5,7) FROM FPGA 43

PWMB(1,3,5,7) FROM FPGA 45

PWMC(1,3,5,7) FROM FPGA 47

SOFTDMC 76

REFERENCE INFORMATION

PINOUTS

IO PORT PINOUT
Some SOFTDMC configurations support I/O ports. SOFTDMC I/O ports are 12 bit

ports with individual (per bit) direction control. In addition, secondary encoder inputs usually
share the I/O A/B port pins. This is a typical IO port pinout, specific SOFTDMC
configurations may vary. Note that Ports C/D,E/F, G/H are similar.

FUNCTION HEADER 50 PIN

PORTB11/SENCB1 1

PORTB10/SENCA1 3

PORTB9/SENCB0 5

PORTB8/SENCA0 7

PORTB7/SIDX1 9

PORTB6/SIDX0 11

PORTB5 13

PORTB4 15

PORTB3 17

PORTB2 19

PORTB1 21

PORTB0 23

SOFTDMC 77

REFERENCE INFORMATION

PINOUTS

IO PORT PINOUT (Continued)

FUNCTION HEADER 50 PIN

PORTA11/SENCB3 25

PORTA10/SENCA3 27

PORTA9/SENCB2 29

PORTA8/SENCA2 31

PORTA7/SIDX3 33

PORTA6/SIDX2 35

PORTA5 37

PORTA4 39

PORTA3 41

PORTA2 43

PORTA1 45

PORTA0 47

