
SOFTDMC

FPGA based

Digital Motion Controller

2.4 - SW Rev. 2.3+ / HW Rev. 23+

This page intentionally not blank

Table of Contents

SOFTDMC . 1

SAFETY . 1
GENERAL . 2

HOST INTERFACE . 3

GENERAL INTERFACE DESCRIPTION . 3
GENERAL . 3

BUS INTERFACE DESCRIPTION . 3
COMMAND REGISTER . 4
DATA REGISTERS . 4
WRITING A PARAMETER . 4
READING A PARAMETER . 5
BUSY TIME . 5
GETTING IN SYNC . 5
FIRMWARE DOWNLOAD . 6
DOWNLOAD PROCESS . 6

SERIAL INTERFACE DESCRIPTION . 6

OPERATION . 7

PARAMETER TYPES . 7

PARAMETER DESCRIPTIONS . 7

INTERNAL HARDWARE . 18
GENERAL . 18
COUNTER CONTROL REGISTER . 18

COUNTER MODES . 18
INPUT FILTER . 18

TRACE BUFFER/FIFO . 18
INTERRUPT REGISTER . 19
I/O PORTS . 19

MOTION UNITS . 20
POSITION UNITS . 20
VELOCITY AND ACCELERATION UNITS . 20
MAXIMUM COUNT RATE . 20
PWM AND SAMPLE RATE . 21
CHOOSING A PWM RATE . 21
MAXIMUM SAMPLE RATE . 22

Table of Contents

 PROFILE GENERATOR . 23
GENERAL . 23
POSITION MODE . 23
OFF BY ONE ERROR . 24
ABORTING A MOVE . 24
VELOCITY MODE . 25
EXTERNAL PROFILE MODE . 25
HOMING . 26

PID LOOP . 27
GENERAL . 27
MAIN PARAMETERS . 28
FEEDFORWARD PARAMETERS . 29
SECONDARY PARAMETERS . 29
FAULT CONDITIONS . 31
EXCESSIVE POSITION ERROR FAULT . 32
EXCESSIVE DRIVE FAULT . 32
RECOVERING FROM FAULT CONDITIONS 33

TUNING . 34
DMCTUNE . 34
TUNING PROCEDURE . 35

GEARING . 36
GENERAL . 37
GEAR VERSUS COPY . 38
OFFSET PART . 38
MASTER-SLAVE GEARING EXAMPLE . 38
ENCODER GEARING EXAMPLE . 38

EVENT LOGIC . 39
GENERAL . 39
CONDITIONS AND OPERATIONS . 39
GLOBAL AND LOCAL EVENTS . 40
LOGICAL EVENT STRUCTURE . 41
COMPARE EVENT STRUCTURE . 42
COMPARE EVENTS CAN USE A POINTER TO A POINTER 42
CONDITIONS . 43
OPERATIONS . 44

Table of Contents

MOTION PARAMETER BLOCKS . 45
GENERAL . 45

 MOTION CONTROL PARAMETERS . 45

FILTER PARAMETER BLOCKS . 47
GENERAL . 47
PID LOOP TUNING PARAMETERS . 47

USER PARAMETERS AND UTILITIES . 49
GENERAL . 49
LEDS . 49
SPEAKER . 49
USER PHASE ACCUMULATOR . 49

SOFTDMC 1

SOFTDMC

SAFETY

WARNING

Servo motors are capable of inflicting serious injury both to people and
mechanisms associated with the servo system. In addition, some motors use
potentially lethal supply voltages.

When a servo system is first configured, unpredictable behavior should be
EXPECTED. First time checks of basic servo operation (such as motor position
versus drive) should be checked with the motor power leads disconnected.

NEVER depend on software commands to disable a motor when you or
others would be exposed to a hazard should the motor start unexpectedly. Motor
power should be always be removed when working on mechanical parts of the
servo system.

Be especially careful with encoder wiring, as a simple bad connection of one
encoder wire can lead to loss of control and a runaway servo system.

SOFTDMC 2

SOFTDMC

GENERAL

The SOFTDMC digital motion controller is a FPGA based multi-axis DC servo
motor controller intended for embedding in Xilinx SpartanII,SpartanIIE and Virtex FPGAs.
The 4 axis motion controller will fit in a 100K gate SpartanII or SpartanIIE part and the
8 axis controller will fit in a 200k gate SpartanII or SpartanIIE.

All logic, CPU, RAM and program ROM reside in a single FPGA chip making for
an extremely flexible, powerful, and very low cost motion control solution. Custom variants
of the SOFTDMC design can be easily created for specific applications.

The SOFTDMC design has an embedded ~50-100 MIPS 16 bit DSP coupled with
special hardware for motion control. Each axis has dual quadrature and index inputs,
PWM, direction and enable outputs. Up to 72 general purpose I/O bits are also available
for limit switches, status outputs, absolute encoder inputs, and other uses.

Position, velocity and acceleration parameters are all 32 bit. Dual encoders per
axis permit dual feedback (position/velocity). 32 bit gearing between axis is provided for
precise ratioed multi-axis moves. A 1024 word trace buffer is available in some
configurations.

The fully synchronous design of the host interface allows almost any parameter to
be changed during motion. 16 bit PC/104, 8 bit microcontroller, PCI, serial, and other host
interface types are available.

The PID loop has the normal proportional, integral, integral limit, and derivative
terms, plus velocity, acceleration, bias, and friction feed forward terms to extract the
maximum performance from the mechanics. High sample rates (>30KHz for 4 axis
simultaneous motion, 66Mhz clock) support small and fast drive systems.

Programmable event/breakpoint logic allows real time response to internal
(position, time,velocity, flags, etc) and external (limit switches, sensors, etc) events.
Breakpoint and event logic allow fully buffered profiling operations and filter changes based
on breakpoints or external events.

SOFTDMC 3

HOST INTERFACE

GENERAL INTERFACE SPECIFICATIONS

GENERAL
The SOFTDMC has several host interface types available, but all interface types

share as single register map with seven 16 bit registers starting at the BASE address +2.
(Note that that all addresses are byte addresss) All host interaction with the SOFTDMC
is done via these registers. The serially interfaced SOFTDMC configurations are similar
but are accessed via an ASCII command set with hexadecimal parameters.

BUS INTERFACE DESCRIPTION

COMMAND REGISTER
The register at base address +2 is the command register. The command register

is used in conjunction with the data register for reading and writing internal motion
controller parameters. The bit definition for command register writes are as follows:

COMMAND REGISTER WRITES @BASE + 2

W A3 A2 A1 A0 L P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

W (MSB) is the write bit. If this bit is ‘1', a write operation will be performed. If it
is a ‘0', a read operation will be performed. The A0 through A3 bits specify which axis will
be selected for the parameter read or write. The L bit specifies if the parameter is a 32
or 16 bit parameter, a ‘1' bit specifies a 32 bit parameter. The P0 through P9 bits specify
the parameter that will be written or read.

On reads, Bit 15 of the command register is the busy bit, indicating that a
command is in progress, and bit 14 is the sync bit, used to synchronize the host with the
internal sample rate. The other bits (S) are general purpose status bits that can be used
by the firmware or event logic to display internal system status.

COMMAND REGISTER READS @BASE + 2

B SY S S S S S S S S S S S S S S

SOFTDMC 4

HOST INTERFACE

GENERAL

DATA REGISTERS
Motion control parameters are transferred to and from the motion controller via the

data registers. The registers are located at base address +4 and base address +6. There
are two data registers to allow 32 bit parameter reads and writes with a single command
cycle.

DATA REGISTER LOW WORD @ BASE+4

L L L L L L L L L L L L L L L L

DATA REGISTER HIGH WORD @ BASE+6

H H H H H H H H H H H H H H H H

WRITING A PARAMETER
The process of writing a parameter is as follows: First write the parameter data to

the data registers. When 16 bit parameters are written, only the low word of the
parameter register need be written, for 32 bit parameters, both high and low data
registers need to be written. Next the command register is written with the desired
parameter number, word/long bit, axis and write flag (1 bit in MSB). When the command
is written, the busy bit will be set and will stay set until the command is completed.
Commands and data must not be written when the busy bit is high.

READING A PARAMETER
The process of reading a parameter is as follows: First the command register is

written with the desired parameter number, axis, and word/long bit. Once the command
is written the busy bit will be set and will stay set until the requested data is available in
the data registers. Once the busy bit returns to 0 the data can be read from the data
register low word (16 bit parameters) or data register low and high words (32 bit
parameters). Commands must not be written when the busy bit is high. Data should not
be read from the data registers when the busy bit is high.

SOFTDMC 5

HOST INTERFACE

GENERAL

BUSY TIME
The internal DSP handles host interface requests on a synchronous polled basis,

that is it does all the motion control operations for all axis, then runs a host interface loop
until the next sample time. This mode of operation has the advantage that almost any
motion related parameter can be accessed and changed during motion.

One side effect of this mode of operation is that the host interface can stay busy
for the time it takes to process all axis and that the host interface bandwidth will decrease
with increasing sample rates. For example, with a 50 MHz CPU, a sample rate of 10 KHz,
and 4 axis active, approximately 64 uSec would be available for the host interface, and
36 uSec would be used doing motion calculations.

If a host interface cycle starts just after a sample period has begun, the interface
busy bit will stay high for the maximum period. There is always a minimum of one host
interface cycle done per sample period, so that if you set the sample rate faster than the
DSP can process all axis, the host interface will still function.

GETTING IN SYNC
For some special applications, it may be desirable to synchronize the host with the

internal SOFTDMC sample rate. The SYNC bit (Bit 14) in the status register can be used
for this purpose. The SYNC bit is set whenever a host interface cycle is done, and
cleared when all axis calculation are complete (the point at which the SOFTDMC firmware
falls into the host interface loop). For example, to synchronize a host interface such that
the host reads one parameter per sample period, you would create a loop that 1. reads
the desired parameter (which will set the sync bit), and then waits for the sync bit to be
cleared, then repeats.

SOFTDMC 6

HOST INTERFACE

GENERAL

FIRMWARE DOWNLOAD
The 16 bit DSP in the SOFTDMC can have its firmware downloaded from the host

if desired. This will overwrite the standard SOFTDMC firmware that is part of the FPGA
configuration. Three registers are involved in program downloading: the program address
register, the program data register, and the processor reset register.

PROGRAM ADDRESS REGISTER @ BASE+8

X X X X X A A A A A A A A A A A

PROGRAM DATA REGISTER @ BASE+10

D D D D D D D D D D D D D D D D

DSP RESET REGISTER @ BASE+14

X X X X X X X X X X X X X X X R

DOWNLOAD PROCESS
The process for downloading new DSP firmware is as follows: First the DSP is

reset by writing a 1 to the DSP reset register. Then all the words of DSP program are
written by first writing the target address for the word to the program address register,
then writing the program data for that address to the program data register. This is
repeated for all the words of the program firmware. When all the program words have
been written, DSP reset is removed by writing a 0 to the DSP reset register, starting
execution of the new code.

SERIAL INTERFACE DESCRIPTION

SOFTDMC 7

OPERATION

PARAMETERS

GENERAL
The SOFTDMC motion controller has a large number of parameters that control

its operation. Some of these parameters are global but most are duplicated for each axis.
The file INCLUDE.INC and BITS.INC supplied with the SOFTDMC configuration have the
specific parameter addresses and types. Parameter addresses are not referred to in this
document as they may change from firmware revision to revision. This list is not complete
as there are many more parameters that are used internally or for special purposes The
INCLUDE.INC file lists all parameters.

MAKEINC
The supplied utility program MAKEINC will translate the INCLUDE.INC and

BITS.INC to files to include files of various sorts. Assembly, batch, C, and Pascal include
files can be created. Invoking MAKEINC with no parameters will print usage information.
Examples of MAKEINC usage:

MAKEINC INCLUDE.INC SOFTDMC1.H C

(Create C include file of parameter addresses)

MAKEINC INCLUDE.INC MOTPARMS.PAS P S Loc

(Create Pascal include file of parameter addresses, all with appended Loc string)

MAKEINC INCLUDE.INC MOTPARMS.ASM A M

(Create assembly language include file of parameter addresses, merging parameter
type with name)

PARAMETER TYPES

There are six different types externally useable parameters:

FLAG: Flags are a 16 bit parameter, a value of 0xFFFF is “true” and a value of 0 is
false.

PTR: 11 bit address pointer range 0 to 2047

INT: 16 bit signed number range -32768 to 32767

UINT: 16 bit unsigned number range 0 to 65535

LONG: 32 bit signed number range -2147483648 to 2147483647

SOFTDMC 8

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

OPERATION FLAGS

GO FLAG AXIS Start profile when set true, cleared
when done

MOTION FLAG AXIS True when in motion (velocity <> 0)

PID FLAG AXIS Enable PID portion of control loop when
true

PROFILE FLAG AXIS Enable profile generator when true

EXTPROFILE FLAG AXIS Disables velocity follower when true,
allowing host control of DDA.

HOME FLAG AXIS True when home operation is complete

DIRINV FLAG AXIS Invert direction output polarity if true

ERROR FLAG AXIS True when excessive position error has
occurred

SLEW FLAG AXIS True when slew portion of profile has
been reached

SWAPMOT FLAG AXIS Set true to do motion register set swap,
cleared when swap is done

SWAPFIL FLAG AXIS Set true to do PID filter register set
swap, cleared when swap is done

RESET FLAG AXIS Do hardware reset of Axis if cleared

SOFTDMC 9

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MISC MONITORING AND CONTROL FUNCTIONS

LED PTR GLOBAL Specify which parameter the debug
LEDs follow

LEDAXIS PTR GLOBAL Specify which axis the LEDs parameter
is read from

BEEPER PTR GLOBAL Specify which parameter the beeper is
driven by

ACTVEL INT AXIS Actual velocity (counts/sample)

MAXPWM UINT AXIS Maximum PWM drive applied

MAXNEGERR INT AXIS Maximum negative deviation from
profile. (counts)

MAXPOSERR INT AXIS Maximum positive deviation from profile
(counts)

EXERR INT AXIS Excessive position error limit (counts)

EVENTS UINT AXIS Number of events (max number
depends on free memory)

FIXUP LONG AXIS Difference between profile end position
and NEXTPOS (counts)

ERROR LONG AXIS Position error (counts)

SOFTDMC 10

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

 PID LOOP TUNING PARAMETERS (Working block)

KK UINT AXIS PWM offset or bias

KP UINT AXIS Proportional constant

KD UINT AXIS Derivative constant

KA UINT AXIS Not used

KI LONG AXIS Integral constant

KIL UINT AXIS Integral limit

KF1 UINT AXIS Velocity feed forward term

KF2 UINT AXIS Acceleration feed forward term

KF3 UINT AXIS Not used

KFF UINT AXIS Friction feed forward term

KDFIL UINT AXIS Derivative term filter coefficient

POSENC PTR AXIS PID loops pointer to position encoder
(default = ENCP)

VELENC PTR AXIS PID loops pointer to position encoder
used for velocity calculation (default =
ENCP)

NEXTFILBLOCK PTR AXIS Pointer to next filter block

SOFTDMC 11

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MOTION CONTROL PARAMETERS (Working Block)

NEXTPOS LONG AXIS Next position for move

SLEWLIMIT LONG AXIS Slew speed during move
(counts/2^24/sample)

DESVEL LONG AXIS Commanded velocity for velocity or
profile mode (counts/2^24/sample)

ACCEL LONG AXIS Acceleration value
(counts^2/2^24/sample)

DELA LONG AXIS Delta acceleration for cubic profiles

BREAKPOINT LONG AXIS Local breakpoint value

BREAKA PTR AXIS Normally points to value compared to
BREAKPOINT

BREAKB PTR AXIS Points to breakpoint value (normally
BREAKPOINT)

NEXTMOTBLOCK PTR AXIS Pointer to next motion control block

USER UINT AXIS Free user variable or pointer

USER PARAMETERS

ENCP LONG AXIS Primary encoder position (counts)

ENCS LONG AXIS Secondary encoder position (counts)

FOLLOW PTR AXIS Pointer to position for PID loop to follow
(default = DESPOS)

GEARP LONG AXIS Primary gear ratio (8.24). If 0, gearing
is disabled (1X used)

GEARS LONG AXIS Secondary gear ratio(8.24) If 0, gearing
is disabled (1X used)

SOFTDMC 12

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

USER PARAMETERS

GEARPOFFSET LONG AXIS Primary gear offset

GEARSOFFSET LONG AXIS Secondary gear offset

GEARPPARAM PTR AXIS Pointer to primary geared parameter

GEARSPARAM PTR AXIS Pointer to secondary geared parameter

DESVEL LONG AXIS Current profile generated velocity
(Counts/2^24/sample)

HOMEPOSP LONG AXIS Primary encoder starting position count
(loaded when index detected)

HOMEPOSS LONG AXIS Secondary encoder starting position
count (loaded when index detected)

PHASEK LONG AXIS Phase constant for user timer
(PHASEA=(PHASEK*sample)

PHASEA LONG AXIS User phase accumulator timer

COPYSRCL PTR AXIS Long parameter copy source pointer

COPYDSTL PTR AXIS Long parameter copy destination
pointer

COPYSRCU PTR AXIS Short parameter copy source pointer

COPYDSTU PTR AXIS Short parameter copy destination
pointer

SOFTDMC 13

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MISCELLANEOUS GLOBAL PARAMETERS

GEAREDP0 LONG GLOBAL Primary geared parameter, axis 0

GEAREDS0 LONG GLOBAL Secondary geared parameter, axis 0

GEAREDP1 LONG GLOBAL Primary geared parameter, axis 1

GEAREDS1 LONG GLOBAL Secondary geared parameter, axis 1

GEAREDP2 LONG GLOBAL Primary geared parameter, axis 2

GEAREDS2 LONG GLOBAL Secondary geared parameter, axis 2

GEAREDP3 LONG GLOBAL Primary geared parameter, axis 3

GEAREDS3 LONG GLOBAL Secondary geared parameter, axis 3

GEAREDP4 LONG GLOBAL Primary geared parameter, axis 4

GEAREDS4 LONG GLOBAL Secondary geared parameter, axis 4

GEAREDP5 LONG GLOBAL Primary geared parameter, axis 5

GEAREDS5 LONG GLOBAL Secondary geared parameter, axis 5

GEAREDP6 LONG GLOBAL Primary geared parameter, axis 6

GEAREDS6 LONG GLOBAL Secondary geared parameter, axis 6

GEAREDP7 LONG GLOBAL Primary geared parameter, axis 7

GEAREDS7 LONG GLOBAL Secondary geared parameter, axis 7

PROCTIMER UINT GLOBAL Process timer, reads SYSCLK*2 cycles
for processing all enabled axis

SOFTDMC 14

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

MISCELLANEOUS GLOBAL PARAMETERS

TIMEOUT UINT GLOBAL Count of DSP out of time events

SWREVISION UINT GLOBAL Firmware revision number

Major rev. = MSB, Minor rev. = LSB

GPHASEK LONG GLOBAL Global phase accumulator constant

GPHASEA LONG GLOBAL Global phase accumulator

AXIS EVENT AND BLOCK RAM (16 words per block/8 per event)

BLOCK9/EVENT1,EVENT2 AXIS RAM block 9, event 1 and event 2

BLOCK8/EVENT3,EVENT4 AXIS RAM block 8, event 3 and event 4

BLOCK7/EVENT5,EVENT6 AXIS RAM block 7, event 5 and event 6

BLOCK6/EVENT7,EVENT8 AXIS RAM block 6, event 7 and event 8

BLOCK5/EVENT9,EVENT10 AXIS RAM block 5, event 9 and event 10

BLOCK4/EVENT11,EVENT12 AXIS RAM block 4, event 11 and event 12

BLOCK3/EVENT13,EVENT14 AXIS RAM block 3, event 13 and event 14

BLOCK2/EVENT15,EVENT16 AXIS RAM block 2, event 15 and event 16

BLOCK1/EVENT17,EVENT18 AXIS RAM block 1, event 17 and event 18

GLOBAL EVENT/MISC RAM

GEVENT1 through GEVENT12 GLOBAL Event or general purpose RAM

SOFTDMC 15

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

INTERNAL HARDWARE

CNTCTL UINT AXIS Sets operational mode of quadrature
input counter

PRESCALE UINT GLOBAL Sample rate prescale digital oscillator -
sets PWM rate as:
(SYSCLK/256)*(PRESCALE/65536)

POSTSCALE UINT GLOBAL Byte sample rate postscale divider -
sets sample rate as PWM/POSTSCALE

PWMGEN UINT AXIS Byte (in MSB of word) PWM value
normally driven by PID loop, but can be
host controlled if the PID loop is
disabled

DIR UINT AXIS Single bit in MSB controls direction
output bit

ENA UINT AXIS Controls Hbridge/Servo Amp enable bit

IRQREG UINT GLOBAL Controls IRQ channel and mask

SETIRQ FLAG GLOBAL Writes here set IRQ

CLRIRQ FLAG GLOBAL Writes here clear IRQ

PUSH UINT GLOBAL Writes push data on Trace buffer/FIFO

POP UINT GLOBAL Reads read trace buffer data. Writes
advance read pointer.

FIFOMODE UINT GLOBAL FIFO mode 1= FIFO, 0= Circular buffer

FIFOSTAT-CLR UINT GLOBAL Reads read data count, writes clear
FIFO

SOFTDMC 16

OPERATION

PARAMETER DESCRIPTIONS

PARAMETER TYPE G/A FUNCTION

USER I/O PORTS

PORTA UINT GLOBAL I/O port A data register

PORTADDR UINT GLOBAL I/O port A data direction register

PORTB UINT GLOBAL I/O port B data register

PORTBDDR UINT GLOBAL I/O port B data direction register

PORTC UINT GLOBAL I/O port C data register

PORTCDDR UINT GLOBAL I/O port C data direction register

PORTD UINT GLOBAL I/O port D data register

PORTDDDR UINT GLOBAL I/O port D data direction register

PORTE UINT GLOBAL I/O port E data register

PORTEDDR UINT GLOBAL I/O port E data direction register

PORTF UINT GLOBAL I/O port F data register

PORTFDDR UINT GLOBAL I/O port F data direction register

HARDWARE INFO

NAXIS UINT GLOBAL Number of Axis for this hardware

HWREVISION UINT GLOBAL Hardware revision number

HWTYPE UINT GLOBAL Hardware type number
(4I34/7I60/5I20/CUSTOM etc)

SOFTDMC 17

OPERATION

INTERNAL HARDWARE

GENERAL
Most of the internal hardware in the SOFTDMC is for use by the DSP and the

user need not be concerned with its operation. There are however a few I/O devices that
are appropriate for the user to access directly: The counter control register, the interrupt
setup register and the I/O ports.

COUNTER CONTROL REGISTER
There are two quadrature counters available per axis (for the primary and

secondary encoders) Each counter has an associated counter control register. The
counter control register is an 8 bit register in the LS byte of the word:

U/D FILTER CLRD COI IDXPOL CL/IDX B A

Counter control register bits are defined as follows:

B7 U/D R/W — Up/Down mode if set (1x mode) quadrature (4X) mode if
clear

B6 FILTER R/W — Enables ~3 MHz digital low pass filter on A,B, Index inputs
if set.

B5 CLRD R/W — If read as 1, indicates counter has been cleared, if written
as 0, clears flag

B4 COI R/W — Clear On Index, if set, counter will be cleared by index

B3 IDXPOL R/W — Sets polarity of index input - High = active high index

Low = active low index

B2 CL/IDX R/W — Clear counter if set on writes, read back index input status

B1 B R/O — Reads back B input

B0 A R/O — Reads back A input

SOFTDMC 18

OPERATION

INTERNAL HARDWARE

COUNT MODE
The encoder counters can operate in 2 different modes: Quadrature mode and

up/down mode. Quadrature mode(the default) is selected when the U/D bit in the counter
control register is a zero, Up/down mode is selected when the U/D bit is a one.

When used in quadrature mode, the counter will count on every edge of the A and
B inputs. This is sometimes called the 4X mode, since a X line encoder will generate 4X
counts per revolution in this mode. This is the suggested mode of operation for most
motion control applications since it quadruples the encoder resolution, is more resistant
to false counts, and will result in higher performance.

When used in the up/down mode, a count is generated by the rising edge of the
A input. This is sometimes called in a 1X mode (a 500 line encoder will generate 500
counts per revolution in up/down mode) When the UP/DOWN mode is selected, the A
input becomes the count input and the B input becomes the count direction, When B is
high the count direction is up.

The secondary encoder can be used in UP/DOWN mode to emulate a
stepper/indexer combination. To do this the PID loops FOLLOW pointer is set to point to
the secondary encoder. Now the A, and B inputs of the secondary encoder become step
and direction inputs to the emulated stepper. Each step will index the motor one encoder
count of the primary encoder.

INPUT FILTER
The encoder counters have an optional digital input filter that reduces susceptibility

to noise spikes on the encoder lines. The filter is enabled by setting the FILTER bit in the
counter control register. When the filter is enabled, the maximum count rate is limited to
~3 MHz. It is suggested that the filter always be enabled unless count rates faster than
3 MHz need to be tracked.

TRACE BUFFER/FIFO
Some SOFTDMC implementations include a 1024 word trace buffer/FIFO. This is

useful for gathering statistics in real time for later playback. The FIFO has 4 I/O ports,
PUSH,POP,FIFOMODE and FIFOSTAT/CLR. Writes to the push location “push” data
onto the FIFO. Reads from the POP location fetch data from the FIFO. Writes to the POP
location advance the POP pointer. Writes to the FIFOSTAT/CLR location clear the FIFO,
and reads from the FIFOSTAT/CLR location return the count of items in the FIFO.

The FIFO can operate in 2 different modes depending on the setting of the
FIFOMODE bit. When FIFOMODE is high, the FIFO mode is used. In FIFO mode, once
the FIFO becomes full, additional writes to PUSH are ignored. When FIFOMODE is low
the circular buffer mode is used. In circular buffer mode, writes to PUSH when the FIFO
is full push the new data and delete (POP) the oldest data.

SOFTDMC 19

OPERATION

INTERNAL HARDWARE

INTERRUPT CONTROL REGISTER
The PC/104 and PCI versions of the SOFTDMC have an interrupt control register

to specify which interrupt is generated by writing to the SETIREQ register. The Interrupt
control register is an 8 bit register in the LS byte of the word:

IRQ IMASK XX IDRVEN ISEL3 ISEL2 ISEL1 ISEL0

Interrupt control register bits are defined as follows:

B7 IRQ R/O Interrupt request status

B6 IMASK R/W Interrupt mask - high to enable interrupt

B5 XX Not used

B4 IDRVEN Tri-State IRQ drive enable (high to enable) (PC/104 only)

B3--B0 ISELX Interrupt select bits (PC/104 only)

In addition to the Interrupt control register, there are 2 other registers associated
with interrupts, the SETIRQ register and the CLRIRQ register. These are simple 1 bit
registers that set or clear the interrupt request when written to. Write data is don’t-care.

On the microcontroller version, SETIRQ and CLRIRQ set and clear the ATT line
on the microcontroller interface.

I/O PORTS
A number of general purpose I/O ports are available for any use. These can be

read and written by the host for simple polled operation, or driven by the DSPs event
logic for real time response to and control of external events. All I/O ports are 12 bits
wide, in the LS portion of the word (bits 0 through 11). Each port has an associated data
direction register (DDR). A 0 in a bit position of the DDR means that the corresponding
bit in the I/O port is an input. A 1 in a bit positions in the DDR means that the
corresponding bit in the I/O port is an ouput. At reset, the DDR is cleared, so the default
port direction is all-bits-in.

When a bit is configured as an output, reads of that bit will return the real time
status of the I/O pin, not the latched output data. If a high capacitance load is being
driven, an immediate readback after an output may not reflect the latest data written to
that bit. This means that care must be taken if multiple events in the same Axis do read-
modify-write operations to the same I/O port location.

SOFTDMC 20

OPERATION

MOTION UNITS

POSITION UNITS
Position units are simple, they are just a signed 32 bit position numbers. They

correspond directly with encoder counts. The encoder counter can be programmed to run
in quadrature (4X) mode (default) or up/down mode. In quadrature (or 4X) mode, the
counter will change on every input edge, this would, for example, give 2000 counts per
revolution with a 500 line encoder. In the up/down mode, a 500 line encoder will give 500
counts per revolution.

VELOCITY AND ACCELERATION UNITS
Dynamic units are a little more complex because they involve the sample period.

The DESVEL parameter is signed 32 bit number with units of encoder_counts / (2^24)
/sample_period. One way of looking at this is as a 32 bit number with a 24 bit fractional
part (8.24). This means that the maximum programmable velocity is ~127 counts per
sample period. With a 500 line encoder (in 4X mode = 2000 counts/rev) and a ~10 KHz
sample rate this works out to be ~38000 RPM. Minimum velocity would be 1/(2^24)
counts per sample period which works out to .000018 RPM (less than 1 revolution per
month) at a 10 KHz sample rate, which is also the velocity resolution at a 10 KHz sample
rate.

Acceleration units are in encoder_counts/2^24/sample_period^2.

MAXIMUM COUNT RATE
The quadrature counter hardware consists of a 9 bit up/down counter with

quadrature input decode logic. At every sample period, each counter are read, the count
value added to a 32 bit accumulator and then the 9 bit hardware counter is cleared. This
limits the maximum count rate of the encoder inputs to ~255 counts per sample. This is
double the fastest programmable velocity, so is very unlikely to occur normally. The count
rate works out to be ~2.55 MHz at a 10 KHz sample rate or 6.38 MHz at a 25 Khz
sample rate. Note that the count rate is limited to ~3 MHz if the input filter option is
enabled (see hardware section)

SOFTDMC 21

OPERATION

MOTION UNITS

PWM AND SAMPLE RATE
The PID loop and Profile Generator operate at a fixed sample interval determined

by the setting of two parameters. PRESCALE and POSTSCALE. PRESCALE sets the
rate of a 16 bit phase accumulator. The phase accumulator multiplies the system clock
by a factor of PRESCALE/65536. For example, the maximum PRESCALE value of 65535
will result in a multiplication ratio very close to one, while a PRESCALE value of 16384
would result in a ratio of 1/4. The output of the phase accumulator generates the clock
for the PWM generator. The phase accumulator is used instead of a programmable
divider so that the sample rate may be chosen with high resolution. At normal PWM rates
of ~25KHz, the PWM frequency and hence sample rate are selectable to within the
accuracy of the system clock crystal oscillator, < .01 %.

The equations for PWM rate and sample rate are as follows:

For example, at a system clock frequency of 50 MHz, a PRESCALE value of 8389
would give a PWM value of 25.001 Khz. (50e6/256*8389/65536). With a POSTSCALE
value of 2, the sample rate would be 25.001 Khz/2 = 12.5 Khz.

CHOOSING A PWM RATE
PWM rates are normally chosen to be above the audible range (>20 KHz). Lower

rates can be used for larger motors and have the advantage of higher efficiency due to
lower switching losses in the Hbridge. When the PWM is used with a filter to generate
analog signals for standard servo amplifiers (like the 7I33 analog servo interface), the
highest PWM rate should be chosen to reduce output ripple.

SOFTDMC 22

OPERATION

MOTION UNITS

MAXIMUM SAMPLE RATE
The SOFTDMC firmware is capable of running at ~30 KHz sample rate for 4 axis

in simultaneous motion and ~15 KHz for 8 axis in simultaneous motion. If the event logic
or gearing are used, the maximum sample rate will be decreased by an amount
depending on the total number of events / gears used. Time per event is approximately
600 nS. The time used per geared parameter is approximately 500 nS.

If the sample rate is set faster than the DSP can process all the enabled axis, the
TIMEOUT count will be incremented. The processing time per loop can be measured via
the PROCTIMER parameter. The PROCTIMER parameter is updated every sample and
counts the number of system clock/2 counts used by the DSP for processing all the
enabled axis. For example, at a system clock of 50 MHz, the PROCTIMER will run at 25
MHz (40 nS/count), so a PROCTIMER value of 700 would be equal to 700*40nS = 28
uSec. Note that if a timeout event happens, the PROCTIMER parameter will be invalid
for that cycle.

If the sample time is set faster than the DSP can process all the axis, the motion
controller will still work, but the sample time will be determined by the (variable)
processing time instead the sample rate generator. Since velocity and acceleration values
will be variable in this case, you should not normally run the motion controller in this
mode.

SOFTDMC 23

OPERATION

PROFILE GENERATOR

GENERAL
There are two main parts of the motion controller firmware, the PID loop and the

PROFILE generator. The basic job of the profile generator is to provide position
information (the setpoint position) for the PID loop to track, The PID loop then generates
drive and direction signals to control the motor. A profile is a set of positions in the time
domain. The profile generator has parameters for acceleration, slew speed and motion
endpoints, and one main control flag: GO. The profile generator has two main modes of
operation, position mode and velocity mode.

POSITION MODE
In position mode, motion always starts from a stopped condition, in other words

the VELOCITY term is 0. To do a move, the desired ACCEL, SLEWLIMIT, and
NEXTPOS parameters are written and the GO flag is set. The controller will do a ramp-
up/slew/ramp-down motion profile determined by the DELA, ACCEL, SLEWLIMIT and
NEXTPOS parameters.

During ramp-up, at every sample, the ACCEL parameter is added to or subtracted
from the VELOCITY parameter, and in turn the VELOCITY value is added to the
DESPOS parameter. When the absolute VELOCITY parameter is >= SLEW, the
acceleration stops and the motion continues at the SLEWLIMIT rate until a the ramp-
down portion of the motion profile is reached. At this point the signed ACCEL parameter
is added to or subtracted from the VELOCITY parameter until the VELOCITY parameter
reaches 0. At this point the GO flag is cleared by the DSP, and the position move is
complete. This ramp-up/slew/rampdown motion profile is often called a trapezoidal profile
because the velocity profile is a trapezoid. The position profile is a parabolic (square)
function of time.

SOFTDMC 24

OPERATION

PROFILE GENERATOR

OFF BY ONE ERROR
The profile generator has a possible 1 count endpoint error in position mode. This

error occurs when the slew velocity is not reached and the total distance of the move is
not divisible by 2. This single count error is fixed at the end of the move.

ABORTING A MOVE
An executing profile can be aborted by clearing the GO flag and setting the

DESVEL parameter to 0. This can be done by the host, or the event logic.

When doing an abort, the host can determine when the motion has stopped by
polling the MOTION flag. When the MOTION flag is cleared, motion has stopped. At this
point the DESPOS parameter can be read to determine the current position.

If a fast stop is needed, the acceleration parameter should be loaded with an
appropriate value after DESVEL has been set to 0.

SOFTDMC 25

OPERATION

PROFILE GENERATOR

VELOCITY MODE
In velocity mode, the motion is controlled by the commanded velocity (DESVEL)

parameter, and unlike position mode, motion parameters (DELA, ACCEL, AND DESVEL)
can be changed on the fly. This is useful for for profiling operations, allowing complex
profiles to be built up from piecewise line segments with new data sent to the motion
controller for each line segment instead of every point. In velocity mode, the GO bit is
not used, and the commanded velocity (DESVEL) is manipulated directly.

When the DESVEL parameter is changed, the profile generator will increment or
decrement VELOCITY by the current ACCEL value until it equals DESVEL, at that point
VELOCITY will stay constant until DESVEL is changed. DESPOS is always incremented
by the current VELOCITY parameter in velocity mode.

To stop when in velocity mode, DESVEL is set to 0. The MOTION flag can then
be polled to determine when motion has stopped.

The velocity mode can be used for profiling and also for continuous motion: for
conveyors, stirrers etc, as nothing “funny” happens when the DESPOS count wraps at
2^32.

Complicated profiles created in velocity mode require quick response from the host
to supply new parameters. This requirement can be eased by using the event logic and
the motion control blocks to automatically load new motion parameters at position or time
breakpoints. (See event and motion control block section)

EXTERNAL PROFILE MODE
In this mode the host is can control the profile by manipulating the DELA and

ACCEL parameters. This allows creation of cubic position profiles. To use the External
profile mode, the EXTPROFILE flag must be set. When this is set, only the DDA portion
of the profile generator is active and does the following calculations every sample::

IAccel <= IAccel + DELA

DELA is a signed 32 bit number that is added to the least significant 32 bits of the IAccel
parameter. IAccel is a signed 48 bit number consisting of ACCEL as the most significant
32 bits and ACCELFRACT as the least significant 16 bits.

VELOCITY <= VELOCITY +ACCEL (32 bit signed add with ACCELFRACT ignored)

IDespos <= IDespos + VELOCITY / 2^24 (64 bit signed add)

IDespos is a 64 bit number consisting of DESPOS as the most significant 32 bits and
DESPOSF as the least significant 32 bits.

SOFTDMC 26

OPERATION

PROFILE GENERATOR

EXTERNAL PROFILE MODE
In the external profile mode, the velocity follower is disabled so the DESVEL

parameter will have no effect on operation. GO should not be set when using the external
profile mode.

 HOMING
One special function of the profile generator is homing, or establishing the initial

reference point for encoder position readout. Homing requires that there be some kind
of mechanical or optical switch to detect home position, and that this switch is wired to
the index input. To detect this the counter control register of the primary encoder needs
to be setup to recognize the index input. First,The IDXPOL bit should be written to match
the active state of the index input, in other words set to a 1 for active high index signals
and 0 for active low index signals. Homing is then accomplished by setting the
CLEAR_ON_INDEX (COI) bit in the counter control register. The counter control register
is an 8 bit register in the LS byte of a 16 bit parameter. Counter control register bits are
defined as follows:

U/D FILTER CLRD COI IDXPOL CL/IDX B A

 Once the clear on index bit is set, host software should start a slow move in the
desired direction. It may be necessary to poll a limit switch and the index bit (CL/IDX)
before motion is started so that motion is not started when the system is already past the
index detection position. The slow move towards home will proceed until the desired edge
of the index signal is detected. The counter will be cleared only when the edge of the
index signal has been detected and the quadrature inputs (A,B) are both low. When this
happens, the encoder count will be loaded from the HOMEPOSP parameter, the profile
generator will set the desired position to HOMEPOSP, the COI bit in the counter control
register will be cleared, the home FLAG set true and the GO flag set false.

The secondary encoders cannot be used for homing, but can still be preset with
any desired count at index by setting the desired preset count in the HOMEPOSS and
initializing the secondary encoders counter control register as done above for the primary
encoder.

SOFTDMC 27

OPERATION

PID LOOP

GENERAL
The second part of the motion controller firmware is the PID loop. The PID loop

acts as a feedback loop that keeps the actual position equal to the setpoint position.

The PID loops actual position and the setpoint position parameters are selected
with pointers to allow dual encoder feedback, encoder gearing, and ratioed multi-axis
moves.

Using pointers for the actual position reading also allows the use of absolute
encoders connected to one of the I/O ports.

The PID loop is enabled by setting the PID flag, and disabled by clearing the PID
flag. Clearing the PID flag does 2 things, it disables the PID loop, and sets the PWM
value to zero.

The pointers that the PID loop uses are POSENC, for the position encoder,
VELENC for the velocity encoder and FOLLOW for the setpoint position. The default
value of POSENC and VELENC are ENCP, the primary encoder for the axis. The default
value of FOLLOW is DESPOS, the desired position number from the profile generator.
For simple motion operations, the POSENC,VELENC, and FOLLOW pointers can be left
at their default settings. The PID loop is controlled by 6 main parameters:

KP Proportional term or Gain

KI Integral term

KD Derivative term or Damping

KF1 Velocity feed forward term

KF2 Acceleration feed forward term

KIL Integration limit

The output of the PID loop is the a drive signal that sets PWM and direction
signals that control the amount and direction of the current that is applied to the motor.
The simplified equation for this drive is:

Where E is the position error (SETPOINT POSITION - ACTUAL POSITION) .

SOFTDMC 28

OPERATION

PID LOOP

MAIN PARAMETERS
The six main PID parameters are called tuning parameters and have to be set to

match the dynamics of the controlled system.

 KP is the most important tuning parameter as it sets the over-all gain or “stiffness”
of the servo loop. The KP parameter determines how much restoring force is applied to
the motor relative to a given position error. If KP is too low, the overall servo accuracy will
be low. If KP is too high it will be hard to make the servo system stable. Depending on
encoder counts and load dynamics, values from 50 to 5000 are a reasonable range for
KP.

KI is the integral parameter. A feedback loop with only a proportional term (KP) will
always have some remaining error caused by the fact that a finite error is necessary to
supply the drive needed to correct that error. In a real system with friction and static loads
and reasonable values of KP, this error can be significant. The Integral part of the PID
loop is used to accumulate small errors over many sample periods, creating a larger and
larger correcting drive so that even a small position error will eventually be corrected. This
can be useful where friction, spring, or gravity loads cause static error hard to correct with
a reasonable KP term.

The Integral term should be used carefully with dynamic loads and can cause
instability if not used with caution. One other problem with the integral term is what is
sometimes called ‘integral windup’. This happens for example when a position move is
made at a faster rate than the servo system can respond, since in this case the real
position will lag the desired position for the duration of the move, a large integral term will
have accumulated at the end of the move, causing a large, slow to recover overshoot as
the accumulated integral term counts are “deaccumulated” once the move is over.

The KIL term is a bound on the maximum size of the integral error term. It can
help eliminate integral windup, but does limit the amount of drive contributed by the
integral term. A KIL value of 32767 allows maximum drive from the integral term. A value
of 16384 would limit integral related drive to ½ full scale.

KD is the Damping parameter. It is needed to make the servo system stable,
especially at high gains (high KP). The servo control loop is basically a second order
linear differential equation whose solution without the damping term is a sine wave. The
damping term contributes a exponential decay to the equation.

Higher values of KD are needed with higher values of KP. Higher values are also
needed with higher sample rates. This is because damping is dependent on KD and
ACTVEL, and the ACTVEL parameter is inversely proportional to the sample rate.
Reasonable values of damping are from ~200 to 65535 (max).

SOFTDMC 29

OPERATION

PID LOOP

FEEDFORWARD PARAMETERS
The next two terms are called feed-forward terms because they are not part of the

motion control feedback loop, that is they do not depend on the actual measured motion
but rather their values are calculated based on the desired motion profile.

KF1 is the velocity feed forward term. It supplies an amount of drive proportional
to the VELOCITY parameter. Its has two purposes:

1. To counteract the shift in operating point of the servo system due to the damping
term when moving at high speed. For example, when moving at a high constant speed,
the damping term in the PID loop will offset the position servo loop such that the actual
motor profile will lag the profile generators profile. Setting KF1 to KD/256/KDF will
compensate for this phenomena. (See KDFIL for value of KDF)

2. To center the operating point of the PID loop about the current velocity. When
moving at a high speed, a constant amount of motor drive must be applied just to
maintain the motor speed, but in order to apply this drive, a position error must exist. This
has the effect of causing the motor profile to lag the profile generators position profile.
This is corrected by making KF1 a little more than KD/256/KDF. A reasonable value for
KF1 is KD/256/KDF + ~5 to ~200

KF2 is the acceleration feed forward term. It supplies an amount of drive
proportional to the profile generators acceleration value. Its purpose is to center the
operating point of the feedback loop when accelerating or deccelerating. It can be used
to compensate for the undershoot when starting a quickly accelerated motion and
overshoot when stopping.

SECONDARY PARAMETERS
KK is a signed bias on the PWM output. It can be used for zeroing servo amplifier

outputs, or as a feedforward term when operating into a fixed load (gravity for example)

KFF is a friction feed forward term that is used to overcome friction (stiction) in the
drive system. It supplies a selectable amount of drive in the direction of motion. It can
also be used to compensate for the deadzone that Hbridges generate with their blanking
time.

KDFIL is the derivative filter parameter. It sets the controlling coefficient in a
smoothing filter for the calculated velocity. The velocity term is always problematic in
digital servo loops because it is calculated from the change in position from one sample
interval to the next. The change in encoder readings at small velocities may be less than
one count per sample interval so the derivative term in the PID loop will alternate between
0 and 1 * KD, giving very coarsely quantized damping.

SOFTDMC 30

OPERATION

PID LOOP

SECONDARY PARAMETERS
To reduce this quantization noise, the SOFTDMC incorporates a digital smoothing

filter that is applied to the measured velocity before it is used in the PID loop. The KDFIL
parameter determines the coefficients of a time weighted running average of the
measured velocity. Valid numbers for KDFIL are between 0 and 65535. If KDFIL is set
to 0, no filtering takes place. Larger values will result in longer time constants which may
have a negative effect on loop stability. A reasonable starting value of KDFIL is 49152.
This will make the filtered velocity consist of one part current measured value and 3 parts
that are the time weighted sum of all previous velocity values. This will also increase the
damping by a factor of 4. The increase in damping factor contributed by KDFIL is:

Large values of KDF can result in overflow of the damping term. Encoder counts
per sample * KDF must be limited to < 127 or this overflow will occur causing an erratic
damping term in the PID loop. For example, using the suggested starting value of KDFIL
= 49152, which gives a KDF of 4, and assuming a 500 line encoder in 4X mode, and a
sampling rate of 20 KHz, we get 127/4 = 31 = max counts/sample = 18600 RPM.

Using a large value of KDFIL can reduce the acoustic noise from the motor during
slow moves that results from the coarse quantization of the damping.

SOFTDMC 31

OPERATION

PID LOOP

FAULT CONDITIONS
There are several possible conditions that can cause loss of control or runaway

conditions in the PID control loop, with the possible result of harm to equipment or
personnel. One special task of the PID loop is to monitor the servo loops position error
and PWM drive signal to check for these system faults.

Faults caused by mechanical problems during normal motion can usually be
detected by using a small enough excessive position error limit to disable the PID loop
and shut down the PWM drive in this case.

Other faults include system connection and component failure. One obvious
connection related fault condition is reversed encoder or motor leads, resulting in positive
feedback and immediate runaway. This can be avoided by using keyed connectors to
prevent mis-assembly in the field. A small enough excessive position error limit will also
help in these cases.

A failed encoder or bad encoder connection, broken encoder wire, etc, can cause
runaway when the PID loop is simply holding a static position. The excessive position limit
does not help in this case since the PID loop is “blinded” and unable to see the motors
motion. The excessive drive detection can be used in this case to shut down the drive.

If more positive detection of electrical faults is needed, one option is to use an
extra encoder to detect motion when none is expected. This encoder can connect to one
of the alternate SOFTDMC encoder inputs, and be monitored by the host or event logic
to detect a runaway condition. This motion detection encoder can be as simple as a
slotted wheel with a single detector since we only need to detect an accumulation of
counts where none are expected and are not concerned with the direction of the counts.
When a slotted wheel is used, the alternate encoder would be used in UP/DOWN mode.

SOFTDMC 32

OPERATION

PID LOOP

EXCESSIVE POSITION FAULT
One fault is excessive position error. Excessive position error means that the

absolute value of the PID loops error in counts is greater than the EXERR parameter for
that axis. This can occur because of a mechanical fault (stall), attempting to attain faster
velocity or acceleration than the mechanical system can deliver, PID filter values that
result in unstable operation, or electrical faults in the drive system. Having a reasonable
value of excessive position limit is a safety issue.

Note that the maximum excessive position error is 32767. An EXERR value of zero
will disable excessive position error checking. This saves some time, so if excessive
position error detection is not needed, EXERR should be set to zero.

When an excessive position fault occurs, four things happen: 1. The GO flag will
be cleared, 2. The ERROR flag will be set, 3. The PID flag will be cleared, which disables
the PID loop and sets the PWM value to zero, and finally 4. The ENA bit is cleared,
allowing external hardware to detect the fault condition.

EXCESSIVE DRIVE FAULT
Another fault condition that is monitored by the PID loop is excessive drive.

Excessive drive means that the motor drive has exceeded a preset amount (DRIVEMAX).
An excessive drive fault is generated when an excessive drive condition lasts longer than
selectable number of samples. The excessive drive detection works by comparing the
motor drive to the DRIVEMAX parameter every sample. If the motor drive exceeds the
DRIVEMAX parameter, the DRIVESUM parameter is incremented. If the motor drive is
less than the DRIVEMAX parameter, the DRIVESUM parameter is decremented. When
DRIVESUM is decremented, the count is bounded at zero so that it does not underflow.
If DRIVESUM becomes equal to or greater than the DRIVELIMIT parameter, an excessive
drive fault is generated.

The excessive drive detection is valuable because it can detect fault conditions
such as a bad (non counting) encoder that cannot be detected with excessive position
error detection alone.

SOFTDMC 33

OPERATION

PID LOOP

EXCESSIVE DRIVE FAULT
Two parameters are used to setup the excessive drive detection: DRIVEMAX and

DRIVELIMIT. DRIVEMAX would normally be set for close to full scale drive. A reasonable
value would be 95% of full scale drive = .95*65535 = 62258. The DRIVELIMIT parameter
determines how many samples of excessive drive must occur before an excessive drive
fault is generated. At a sample rate of 25 KHz for example, a DRIVELIMIT value of 100
would allow detection of a drive problem that resulted in full scale drive in a 4 mSec.
(1/25KHz*100). Larger values of DRIVELIMIT delay fault detection but also prevent false
fault triggering. Maximum DRIVELIMIT value is 32767.

If drive monitoring is not needed, DRIVEMAX should be set to zero. This will
disable then drive monitoring code.

When an excessive drive fault occurs, four things happen: 1. The GO flag will be
cleared, 2. The ERROR flag will be set, 3. The PID flag will be cleared, which disables
the PID loop and sets the PWM value to zero, and finally 4. The ENA bit is cleared,
allowing external hardware to detect the fault condition. The DRIVESUM parameter can
be checked to determine of the fault was an excessive position error or an excessive
drive fault. DRIVESUM should be reset to zero if an excessive drive fault has occurred.

RECOVERY FROM FAULT CONDITIONS
Once an excessive position error or excessive drive fault has occurred, recovery

can be done in two different ways. One recovery option is to set the ENA bit and then do
a complete re-homing operation on the axis that has suffered the fault. This has the
disadvantage that it may be too time consuming to be practical. The other option is to
read the current position (usually ENCP), and set the desired position equal to the current
position before proceeding with re-enabling the PID loop and setting the ENA bit. FAULT
CONDITIONS

SOFTDMC 34

OPERATION

TUNING

DMCTUNE
The PID loop tuning parameters must be adjusted for each different

motor/load/amplifier combination. A tuning program (DMCTUNE.EXE) is provided with the
SOFTDMC firmware and allows manual adjustment of the main PID tuning parameters
while displaying the servo systems response. DMCTUNE displays 4 parameters: The
programmed motion profile (Green), The actual motion profile (Yellow), The motor drive
signal (Red) and the magnified error, that is the difference between programmed profile
and actual profile (Violet).

DMCTUNE will attempt to access a PCI or PC/104 interface motion controller if
invoked with no command line parameters. For use with serial interfaced SOFTDMC
controllers, DMCTUNE should be invoked with the COM port and BAUD rate on the
command line, for example:

C>DMCTUNE COM1 115200

DMCTUNE COMMANDS:

UpArrow/DownArrow Chose parameter to change

RightArrow/LeftArrow Increment/decrement parameter 10%

End/PageDown Increment/decrement parameter 1%

M/m Set parameter to maximum

Z/z Set parameter to minimum

Insert Do step

S/s Save current motor parameters to temp buffer

R/r Restore current motor parameters from temp buffer

E/e Export all parameters to file

I/i Import all parameters from file

L/l Print all parameters to ASCII list file

ALTX Exit program

SOFTDMC 35

OPERATION

TUNING

TUNING PROCEDURE
It is suggested that the PID loop parameters be adjusted in the following order:

KP and KD: First the gain (KP) and damping (KD) should be adjusted. What you
are trying to do here is get the highest gain possible with a commensurate amount of
damping to prevent overshoot and ringing during a fast step. A fast step here means one
that is faster than the mechanics can follow. This is done by setting the acceleration and
velocity numbers very high (with the ‘M’ command).

The feed-forward terms are adjusted next.

Feedforward term KF1 should be adjusted next. This is done by doing a fast
motion but one with slow enough acceleration to be just within the capabilities of the
servo system to follow. The servo position will lag the profile during the move. A good
starting value of KF1 is KD/256/KDF, This will compensate for most (but not all) of the
lag. Then KF1 is slowly increased until the servo system response matches as closely as
possible to the profile it is following.

Then KF2 is adjusted to compensate for the small lag at the beginning of a move
and small overshoot at the end. Note that the errors corrected by KF2 will be very small
unless you are doing quite fast moves, close to the dynamic limits of the servo system.
Adjusting KF2 is done by setting the velocity and acceleration for a fast move that
reaches slew velocity for about 3/4 of the move, thus the motion profile will have a first
section (1/8 of the time total time) with constant positive acceleration, a middle section
(3/4 of the total time) with constant velocity (0 acceleration) and an end section (1/8 of
the total time)with constant negative acceleration. KF2 will only adjust the portions of the
profile when acceleration <> 0, that is during ramp-up and ramp-down.

Finally KI and KIL are adjusted. For best overall accuracy KI should be used for
correcting the last remaining error after all other PID tuning parameters have been
adjusted. The Integral term can reduce static error to 0 counts, and improve dynamic
(profile following) error. Too large an integral amount will result in instabilities. If the
motion system is ever operated open-loop, the integral term should be disabled by setting
the integral limit (KIL)to 0. This also has the advantage of bypassing the Integral part of
the firmwares PID loop, speeding up the loop and allowing higher sampling rates.

SOFTDMC 36

OPERATION

GEARING

GENERAL
The SOFTDMC has the capability of gearing one or more axis to another so that

precise ratioed multi-axis moves can be done with one master axis generating the motion
profile and multiple slaves following the master axis at selectable gear ratios. Gearing can
also be used to allow one or more axis to follow an external encoder with a selectable
ratio and offset. The source parameters for gearing are accessed via pointers
(GEARPPARAM and GEARSPARAM) so they can be any local (AXIS) or global
parameters. The two gear ratios available per axis (GEARP and GEARS) are 32 bit
signed numbers used as 8.24 (8 bit integer part and 24 bit fractional part) numbers. This
allows positive and negative ratios from 1/(2^24) to ~127/1 with resolution better than 1
PPM for ratios from 1/16 to 16/1.

The 8.24 scaling of the gear ratios means that a ratio of 1/1 is represented by a
GEARP or GEARS value of 16777216 (2^24). A positive ratio means that the geared axis
will move in the same direction as the master axis. A negative ratio means that the
geared axis will move in the opposite direction as the master axis.

In addition to the gear ratio, there is an offset parameter to set initial conditions for
geared moves (GEARPOFFSET and GEARSOFFSET).

The result of the gearing operation is a set of global 32 bit parameters, 2 per axis:
GEAREDP(N) and GEAREDS(N). The equation for the GEAREDP(N) and GEAREDS(N)
is:

For primary gear:

 GEAREDP(N) = GEARP(N)*@GEARPPARAM(N)+GEARPOFFSET(N)

For secondary gear:

 GEAREDS(N) = GEARS(N)*@GEARSPARAM(N)+GEARSOFFSET(N)

SOFTDMC 37

OPERATION

GEARING

GEAR VERSUS COPY
The GEARING operation is relatively expensive (500 nSec per gear) and is

disabled by default. Primary and or secondary gearing are enabled by having a value of
the GEARP or GEARS (ratio) parameter not equal to zero. If the ratio parameter equals
zero (the default value), a ratio of 1 will be used, which is just a copy and add operation.
This means that a simple add and copy operation is always done by default. The default
copy and add operation is useful for moving a local axis parameter to global memory so
it becomes available to all the other axis. The equation for the copy operation is:

For primary gear:

GEAREDP(N) =@GEARPPARAM(N)+GEARPOFFSET(N)

For secondary gear:

GEAREDS(N) =@GEARSPARAM(N)+GEARSOFFSET(N)

SOFTDMC 38

OPERATION

GEARING

OFFSET PART
When initializing geared multi axis operations, even if only the copy part of gearing

is used, you must initialize the offset part of the gear equation so that you end up with the
slave axis’s geared position equal to its current position or you will generate an
uncontrolled motion in the slave when you change the slaves FOLLOW pointer to point
to the GEARED parameter. This is also why you should always change the FOLLOW
pointer last when changing gearing.

If Y represents the geared axis’ initial position and X represents the master axis
initial position so that Y=MX+B where M is the gear ratio and B is the gear offset, you
must initialize B to equal Y-MX before changing the FOLLOW pointer.

MASTER-SLAVE GEARED EXAMPLE
A common use of gearing is to do a multi-axis move with a specific gear ratio

between the axis. The following short discussion will show one way this can done for a
2 axis move (axis 0 = master axis 1 = slave):

First the GEARPPARAM pointer of axis 0 is initialized to point to the DESPOS
parameter of axis 0, then the gear ratio for the slave axis is written to the GEARP
parameter of axis 0. Next the GEARPOFFSET parameter of the master axis is written.
Finally the FOLLOW pointer of axis 1 is initialized to point to the GEAREDP0 global
parameter.

ENCODER GEARING EXAMPLE
It is possible to have one or more axis follow the primary or secondary encoder of

any other axis with a selectable ratio and offset. For example if we wanted axis 0 to follow
the secondary encoder of axis 3, we could proceed as follows:

First set the GEARPPARAM parameter of axis 3 to point to ENCS, then set the
GEARP parameter of axis 3 to zero to enable copying instead of gearing. Next set the
GEARPOFFET parameter of axis 3 to zero. This results in the secondary encoder (ENCS)
of axis 3 being copied into the global parameter GEAREDP3. Next we setup axis 0 to
scale this parameter and use it as its setpoint. To do this we set axis 0's GEARPPARAM
to point to GEAREDP3, then set axis 0's GEARP parameter to the desired gear ratio, set
axis 0's GEARPOFFET parameter to the desired offset, and finally set axis 0's FOLLOW
parameter to point to GEAREDP0.

SOFTDMC 39

OPERATION

EVENT LOGIC

GENERAL
The SOFTDMC has an extremely flexible built in, real time (within one sample

period) event logic system for handling internal and external events. These events include
limit switch actuation, position/velocity/acceleration or time breakpoints, external hardware
events, the host setting or clearing a flag etc etc. The result of a detected event can be
Starting a motion profile, aborting a motion profile, loading new acceleration or velocity
parameters, Motion register block swapping, PID filter block swapping, interrupt
generation, I/O bit manipulation, etc etc.

CONDITIONS AND OPERATIONS
Basic event logic operations are of this form:

If STATICMODE then if CONDITION then OPERATION

If EDGEMODE then if ^CONDITION then OPERATION

Where ^CONDITION means the the current condition is true and the
condition at the previous sample interval was false.

In Static mode the OPERATION is executed whenever the CONDITION is true.
This may mean that the OPERATION will be repeated every sample interval. This is
useful when you want some parameter or some I/O to follow the input condition, or you
want to maintain a count of samples when a condition is true. This can be useful for
example when using limit switch activation as a hard limit, to disable the PID loop,
disabling motor drive.

Edge mode is used when the OPERATION should only occur on a change in the
condition: when the condition is first met. This is useful for operation such as setting an
interrupt when the condition is first detected. For example if we wished to generate an
interrupt when GO return to 0 at the end of a move, we would use an edgemode event
so that when the event is triggered, (by go changing to 0) the IRQ FlipFlop is only set
once, allowing the interrupt service routine to clear the IRQ by simply writing to the
CLRIRQ parameter.

SOFTDMC 40

OPERATION

EVENT LOGIC

GLOBAL AND LOCAL (AXIS) EVENTS
Event blocks are available in both AXIS memory and GLOBAL memory. GLOBAL

events only have access to global memory, axis events have access to the current axis
and global memory. The number of active global events is determined by the GEVENTS
parameter. The number of active axis events is determined by the EVENTS parameter.
Events in AXIS memory share space with motion and filter blocks, so you must be careful
not to allocate an axis event on top of an existing filter or motion control block. If EVENTS
or GEVENTS is <>0 then all axis events or global events from 1 to EVENTS or
GEVENTS are enabled. Event blocks are allocated from low memory to high, starting with
event 1. You should not activate a event without properly initializing all fields or
unpredictable behavior can result.

All event blocks consist of eight 16 bit words. These words have somewhat
different definitions for logical events and compare events. Note that the first four words
in the event block are condition related, and the last four words are operation related.
Compare and logical conditions and be combined with logical, add, and copy operations
in any way, so that there are six basic event types.

Events are processed in sequence, that is, event 1 is processed before event 2.
This sequence is important when the operation part of one event affects subsequent
events, or precise timing is needed. For example, if event 1 sets an I/O bit and event
2 clears the I/O bit, the I/O bit will be only be set for one event time = ~300 nS. If on
the other hand event 2 sets an I/O bit and event 1 clears it, the I/O bit will remain set
for 1 sample period.

SOFTDMC 41

OPERATION

EVENT LOGIC

LOGICAL CONDITION EVENT STRUCTURE

CONDPTR Pointer to condition parameter

Bit 15 of CONDPTR must be low to select logical operation

CONDXOR Condition XOR (polarity) mask

CONDAND/PTR Condition AND (bit selection) mask

CONDFLAG Result of compare (for edge detection or subsequent logic)

OPERPTR Pointer to output parameter

Bit 15 high selects edge mode / low selects static mode

Bit 14 high selects add mode/ low selects logical operation mode

Bit 13 high selects copy mode

OPERXOR Operation XOR (polarity) mask or ADDed value

OPERAND Operation AND (bit selection)

OPEROR/SRC Operation OR (output data) or pointer to copy source

SOFTDMC 42

OPERATION

EVENT LOGIC

COMPARE CONDITION EVENT STRUCTURE

CONDPTR Pointer or pointer to pointer to compared parameter (A)

Bit 15 of CONDPTR must be high to select comparison operation

Bit 14 high selects 32 bit unsigned compare / low selects 16 bit
signed compare

Bit 13 high selects doubly indirect mode (pointer to a pointer)

CONDXOR 0x0000 for normal compare 0xFFFF to reverse result

COMDAND/PTR Pointer or pointer to pointer to compared value (B)

CONDFLAG Result of compare (for edge detection or subsequent logic)

OPERPTR Pointer to output parameter

Bit 15 high selects edge mode / low selects static mode

Bit 14 high selects add mode/ low selects logical operation mode

Bit 13 high selects copy mode

OPERXOR Operation XOR (polarity) mask or ADDed value

OPERAND Operation AND (bit selection)

OPEROR/SRC Operation OR (output data) or pointer to copy source

COMPARE EVENTS CAN USE A POINTER TO A POINTER
Notice that the condition (A) and compared value (B) can accessed by a pointer

to a pointer if CONDPTR bit 13=1. This is to allow reference to parameters (such as
breakpoints) that are in turn accessed by pointer, for example the breakpoint value and
compared parameter in a motion control block. By using the double indirection, the sense
of the compare can be reversed by reversing the pointers in the motion control block so
that a linked list of motion control blocks can use a single compare event to swap motion
control blocks, which will update the breakpoint, and simultaneously change the sense of
the compare.

SOFTDMC 43

OPERATION

EVENT LOGIC

CONDITIONS
 There are 3 types of detectable CONDITIONs:

1. Logical (16 bit bit field)

 2. Arithmetic compare (16 bit unsigned)

3. Arithmetic compare (32 bit signed)

 Logical CONDITIONs are evaluated by XORing the condition parameter with the
CONDXOR mask and then ANDing the result with the CONDAND mask. If the result is
<> 0 then the OPERATION occurs. Logical conditions could include limit switch detection,
detection of internal flags (GO,HOME,SLEW, other event generated flags), etc.

Compare CONDITIONs work by comparing two 16 or 32 bit parameters (A and B).
First the two numbers are compared. The compare result is true when A<B.The result of
the compare is then XORed with the CONDXOR mask CONDXOR can be 0x0000 for
normal compares or 0xFFFF to change the direction of the compare. By swapping A and
B and selecting 0x0000 or 0xFFFF as the CONDXOR mask, four compare types are
possible:

A<B (Direct)

A>=B (Result inverted)

A>B (Pointers swapped)

A<=B (Pointers swapped, result inverted)

Compare CONDITIONS are useful for time, position, velocity or acceleration
breakpoints, timers, event counters etc.

SOFTDMC 44

OPERATION

EVENT LOGIC

 OPERATIONS
There are 3 operations possible as the result of an CONDITION being met.

1. Logical (OPERPTR bit 14=0 and bit 13=0)

2. Add (OPERPTR bit 14=1 and bit13=0)

3. Copy (OPERPTR bit 14=0 and bit 13=1)

Logical operations read the output parameter into a variable, XORs the variable
with the OPERXOR mask, ANDs the variable with the OPERAND mask, ORs the variable
with the OPEROR mask and then writes this variable back to the output parameter. This
allows setting, clearing or toggling any bit or sets of bits in the output parameter (where
OPERPTR points).

The Add operation reads the output parameter into a variable, adds the
OPERXOR parameter to the variable ANDs the variable with the OPERAND mask, ORs
the variable with the OPEROR mask and then writes this data back to the output
parameter. This is useful for event counting, timing etc.

Copy operations fetch the OPEROR/SRC parameter, XORs the fetched data with
the OPERXOR parameter, ANDs it with the OPERAND parameter and writes the result
to the output data (where OPERPTR points)

All three operations can be edge triggered or static. Edge triggered mode is
selected by setting OPERPTR bit15 =1.

SOFTDMC 45

OPERATION

MOTION PARAMETER BLOCKS

GENERAL
The main motion controlling registers are duplicated in a series of parameter blocks

that allow linked list type sequential motions or profiling commands to be made without
host involvement. The standard implementations of SOFTDMC have 9 motion control or
filter parameter blocks available, blocks 1 through 9. These are shared between Motion
control blocks, filter parameter blocks and events. Make sure that you do not allocate
overlapping blocks! The motion register blocks are the same size as filter register blocks
and are allocated from high memory down to low memory, to allow a mix of events and
register blocks to co-exist.

Note that there is an additional block, the ‘working block ‘ that is always be used
for all motion control. When a SWAPMOT command is issued, (by setting the SWAPMOT
flag), the working block will be overwritten by the block pointed to by the NEXTBLOCK
parameter in the working block. The SWAP command can be issued by the host or can
be internally generated by the EVENT LOGIC. Note, If you do not need high speed
operations and command buffering, the linked list nature of the motion control blocks can
be ignored, and only the working block will be used.

Each motion control block contains the following parameters:

MOTION CONTROL PARAMETERS
NEXTPOS LONG AXIS Next position for move

SLEWLIMIT LONG AXIS Slew speed during move

DESVEL LONG AXIS Commanded velocity for velocity or
profile mode

ACCEL LONG AXIS Acceleration value

DELA LONG AXIS Delta acceleration for cubic profiles

BREAKPOINT LONG AXIS Local breakpoint value

BREAKA PTR AXIS Normally points to value compared to
BREAKPOINT

BREAKB PTR AXIS Points to breakpoint value (normally
BREAKPOINT but can point to anything)

NEXTMOTBLOCK PTR AXIS Pointer to next motion control block

USER UINT AXIS User variable or pointer

SOFTDMC 46

OPERATION

MOTION PARAMETER BLOCKS

MOTION CONTROL PARAMETERS
The first six parameters in the block are standard motion control parameters and

are discussed in the PID LOOP and PROFILE sections of this manual. The last 4
parameters control the operation of the motion control blocks.

NEXTMOTBLOCK is a pointer the the block to be loaded when the SWAP
command is executed. By initializing NEXTMOTBLOCK pointers in each block to point
to the next block, a circular list of blocks can be created. This list of blocks can then be
loaded sequentially by a programmed event. The motion register block firmware does not
actually handle the breakpoint comparison itself, rather the compare is done with an event
(see EVENT LOGIC). programmed to compare the parameter pointed to by BREAKA and
the parameter pointed to by BREAKB (normally the BREAKPOINT value in the working
motion control block).

Note that both the variable parameter that is monitored and the breakpoint value
are accessed via pointers. This allows the breakpoint value and monitored parameter to
be swapped to change the sense of the event logics compare from > to <=.

SOFTDMC 47

OPERATION

FILTER PARAMETER BLOCKS

GENERAL
Like the motion control registers, the PID loop filter parameters are duplicated in

a series of parameter blocks that allow linked list type sequential updating of all filter
parameters between samples. The standard implementations of SOFTDMC have 9 filter
parameter or motion control blocks available, blocks 1 through 9. Note that there is an
additional block that is the working block, that the PID loop uses for its parameters. When
a SWAPFIL command is issued, (by setting the SWAPFIL flag), the working filter
parameter block will be overwritten by the block pointed to by the NEXTBLOCK parameter
in the current working filter block. The SWAPFIL command can be issued by the host or
can be internally generated by the EVENT LOGIC.

Note, If you do not need high speed operations and command buffering, the linked
list nature of the filter parameter blocks can be ignored, and only the working block will
be used.

Each filter parameter block contains the following parameters:

PID LOOP TUNING PARAMETERS
KK UINT AXIS PWM offset or bias

KP UINT AXIS Proportional constant

KD UINT AXIS Derivative constant

KA UINT AXIS Not used

KI LONG AXIS Integral constant

KIL UINT AXIS Integral limit

KF1 UINT AXIS Velocity feed forward term

KF2 UINT AXIS Acceleration feed forward term

KF3 UINT AXIS Not used

KFF UINT AXIS Friction feed forward term

SOFTDMC 48

OPERATION

FILTER PARAMETER BLOCKS

PID LOOP TUNING PARAMETERS
KDFIL UINT AXIS Derivative term filter coefficient

POSENC PTR AXIS PID loops pointer to position encoder
(default = ENCP)

VELENC PTR AXIS PID loops pointer to position encoder
used for velocity calculation (default =
ENCP)

NEXTFILBLOCK PTR AXIS Pointer to next filter block

A common use of the filter parameter blocks is to have a set of filter parameters
used for static conditions and another set used for dynamic (in motion) conditions. The
blocks can be changed automatically with two events, one programmed to look for the GO
flag being set and one looking for the GO flag being cleared.

SOFTDMC 49

OPERATION

USER PARAMETERS AND UTILITIES

GENERAL
 A number of parameters and utility functions are available for debugging and user
applications. The hardware utilities (LEDs and speaker) are only available on certain
platforms

LEDS
Some SOFTDMC FPGA platforms have debug LEDS on the circuit card that can

be useful for debugging and monitoring. The LEDs can be programmed to display the N
least significant bits (where N is the number of available LEDs) of any global or axis
parameter. Two parameters control the LEDs, LEDAXIS and LED. LEDAXIS specifies
which axis is monitored, it is a dont-care value for global parameters. LED is a pointer the
specifies the parameter to monitor. If LED is zero (a null pointer) the LEDs will not be
driven. The LEDs are updated once per sample period.

SPEAKER
Some SOFTDMC FPGA platforms have a simple I/O bit controlled Speaker. A

single pointer (BEEPER) determines which parameter drives the speaker. The most
significant bit (B15) of the parameter that BEEPER points to determines whether the
speaker current is enabled or disabled. If BEEPER is zero (a null pointer) the speaker will
not be driven. The speaker bit is updated once per sample period

PHASE ACCUMULATOR
The user phase accumulators are 32 bit accumulators that have a constant 32 bit

value added every sample period. They can be used for general timing tasks, or in
conjunction with the event logic for rate generation, timeouts etc, etc. There is one phase
accumulator available per axis, plus one global phase accumulator. Each phase
accumulator has two 32 bit parameters, the phase constant that is added every sample,
and the actual accumulator. The per axis phase constant is called PHASEK and the per
axis phase accumulator is called PHASEA. The global phase constant is called
GPHASEK and the global phase accumulator is called GPHASEA.

SOFTDMC 50

OPERATION

USER PARAMETERS AND UTILITIES

PHASE ACCUMULATOR
As an example of phase accumulator usage, here is one way to setup a rate

generator: Say we want to generate a host interrupt once per second, and that we have
a 10 KHz sample rate. The MSB (bit 31) of the phase accumulator will toggle at a
frequency of:

So we choose a PHASEK of 2^32/10 KHz (~429497) for a one second toggle rate
of the PHASEA MSB. Then we initialize the interrupt control register (IRQREG) to select
the desired interrupt. Finally we set up a edge mode logical event that sets the SETIRQ
flag on the rising edge of the PHASEA MSB. The interrupt service routine would then
write to the CLRIRQ flag to clear the IRQ.

Note that the though average frequency of the generated 1 Hz signal is very
accurate (XTAL accuracy basically) there is a one sample period jitter (1/10KHz = 100
uSec in this example) in the generated rate.

Another example of phase accumulator usage is the DMCTUNE program.
DMCTUNE uses the global phase accumulator to set the sample rate for collecting
accurately timed samples of the internal parameters during motion, offloading this critical
timing task from the host.

